P2467 [SDOI2010]地精部落 DP
传送门:https://www.luogu.org/problemnew/show/P2467
参考与学习:https://www.luogu.org/blog/user55639/solution-p2467
题意:
求波动数列
思路:
设dp【i】【j】 表示长度为i, 开始位子为j, 且开始位子是波峰。
首先这个波动数列有一些性质:
1: 在一个波动数列中,若两个 i 与 i+1 不相邻,那么我们直接交换这两个数字就可以组成一个新的波动数列; 举个栗子: 5 2 3 1 4
2: 把波动数列中的每个数字Ai 变成 (N+1)-Ai 会得到另一个波动数列,且新数列的山峰与山谷情况相反;
3: 波动序列有对称性。 栗子:1 4 2 5 3 to 3 5 2 1 4
由此可以得到动态规划的递推式:
dp【i】【j】 = dp【i】【j-1】+ dp【i-1】【( i - 1 + 1) - j + 1 】
其中,因为 i 和 i+1不相邻,所以可以互换, dp【i】【j】 += dp【i】【j-1】。
或者从 dp【i-1】【j-1】 翻转后推过来,就是dp【i-1】【(i-1+1)- j + 1】。
可以用滚动数组优化
#include <algorithm>
#include <iterator>
#include <iostream>
#include <cstring>
#include <cstdlib>
#include <iomanip>
#include <bitset>
#include <cctype>
#include <cstdio>
#include <string>
#include <vector>
#include <stack>
#include <cmath>
#include <queue>
#include <list>
#include <map>
#include <set>
#include <cassert> using namespace std;
#define lson (l , mid , rt << 1)
#define rson (mid + 1 , r , rt << 1 | 1)
#define debug(x) cerr << #x << " = " << x << "\n";
#define pb push_back
#define pq priority_queue typedef long long ll;
typedef unsigned long long ull;
//typedef __int128 bll;
typedef pair<ll ,ll > pll;
typedef pair<int ,int > pii;
typedef pair<int,pii> p3;
typedef pair<ll,int>pli;
//priority_queue<int> q;//这是一个大根堆q
//priority_queue<int,vector<int>,greater<int> >q;//这是一个小根堆q
#define fi first
#define se second
//#define endl '\n' #define OKC ios::sync_with_stdio(false);cin.tie(0)
#define FT(A,B,C) for(int A=B;A <= C;++A) //用来压行
#define REP(i , j , k) for(int i = j ; i < k ; ++i)
#define max3(a,b,c) max(max(a,b), c);
#define min3(a,b,c) min(min(a,b), c);
//priority_queue<int ,vector<int>, greater<int> >que; const ll mos = 0x7FFFFFFF; //
const ll nmos = 0x80000000; //-2147483648
const int inf = 0x3f3f3f3f;
const ll inff = 0x3f3f3f3f3f3f3f3f; //
const int mod = 1e9+;
const double esp = 1e-;
const double PI=acos(-1.0);
const double PHI=0.61803399; //黄金分割点
const double tPHI=0.38196601; template<typename T>
inline T read(T&x){
x=;int f=;char ch=getchar();
while (ch<''||ch>'') f|=(ch=='-'),ch=getchar();
while (ch>=''&&ch<='') x=x*+ch-'',ch=getchar();
return x=f?-x:x;
}
/*-----------------------showtime----------------------*/ const int maxn = ;
ll dp[][maxn];
int main(){
// freopen("goblin.in", "r", stdin);
// freopen("goblin.out", "w", stdout);
int n,p;
scanf("%d%d", &n, &p);
int id = ;
if(n == ) cout<< % p<<endl;
else {
dp[id][] = ; dp[id][] = ; dp[id][] = ; for(int i=; i<=n; i++){
for(int j=; j<=i; j++){
dp[id^][j] = (dp[id^][j-] + dp[id][i - j + ])%p;
}
id = id ^ ;
}
ll ans = ;
for(int i=; i<=n; i++) ans =(ans + dp[id][i])% p;
printf("%lld\n", ans * % p);
}
return ;
}
P2467 [SDOI2010]地精部落 DP的更多相关文章
- BZOJ 1925: [Sdoi2010]地精部落( dp )
dp(i,j)表示1~i的排列中, 以1~j为开头且开头是下降的合法方案数 这种数列具有对称性, 即对于一个满足题意且开头是上升的n的排列{an}, 令bn = n-an+1, 那么{bn}就是一个满 ...
- P2467 [SDOI2010]地精部落 (dp+组合数)【扩展Lucas好难不会】
题目链接:传送门 题目: 题目描述 传说很久以前,大地上居住着一种神秘的生物:地精. 地精喜欢住在连绵不绝的山脉中.具体地说,一座长度为N的山脉H可分为从左到右的N段,每段有一个独一无二的高度Hi,其 ...
- Luogu P2467 [SDOI2010]地精部落 | 神奇的dp
题目链接 DP 题目大意:给定一个数n,求1~n这n个整数的所有排列中有多少个波动数列,将这个数量%p后输出. 什么是波动数列呢?顾名思义,就是一个大.一个小.一个大.一个小--或者是一个小.一个大. ...
- [BZOJ1925][SDOI2010]地精部落(DP)
题意 传说很久以前,大地上居住着一种神秘的生物:地精. 地精喜欢住在连绵不绝的山脉中.具体地说,一座长度为 N 的山脉 H可分 为从左到右的 N 段,每段有一个独一无二的高度 Hi,其中Hi是1到N ...
- P2467 [SDOI2010]地精部落
题目描述 传说很久以前,大地上居住着一种神秘的生物:地精. 地精喜欢住在连绵不绝的山脉中.具体地说,一座长度为N的山脉H可分为从左到右的N段,每段有一个独一无二的高度Hi,其中Hi是1到N之间的正整数 ...
- 【BZOJ】1925: [Sdoi2010]地精部落 DP+滚动数组
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1925 题意:输入一个数N(1 <= N <= 4200),问将这些数排列成折线 ...
- Luogu2467 SDOI2010 地精部落 DP
传送门 一个与相对大小关系相关的$DP$ 设$f_{i,j,0/1}$表示放了$i$个,其中最后一个数字在$i$个中是第$j$大,且最后一个是极大值($1$)或极小值时($0$)的方案数.转移: $$ ...
- 洛咕 P2467 [SDOI2010]地精部落
同波浪,简单dp. 高度从1到n插入山脉,设f[i][j][k]表示插入了i个山脉,组成了j段,边界上有k个山脉的方案数. 那么新插入的山脉只会:插入在边界上且自己是一段.插入在边界上且与最左边的段相 ...
- [SDOI2010]地精部落 DP
LG传送门 DP好题 题意很简单,就是求1-n的排列,满足一个数两边的数要么都比它大要么都比它小,求这样的排列个数对\(p\)取膜的值(为了表述简单,我们称这样的排列为波动序列). 这个题我第一眼看到 ...
随机推荐
- TIJ学习--RTTI(Runtime-Time Type Identification)
TIJ学习--RTTI(Runtime-Time Type Identification) RTTI 运行时类型检查机制 获取一个类的Class引用的三种方法 class TestClass{} Te ...
- codeforces 347A - Difference Row
给你一个序列,让你求(x1 - x2) + (x2 - x3) + ... + (xn - 1 - xn).值最大的一个序列,我们化简一下公式就会发现(x1 - x2) + (x2 - x3) + . ...
- Apache之——多虚拟主机多站点配置的两种实现方案
Apache中配置多主机多站点,可以通过两种方式实现: 将同一个域名的不同端口映射到不同的虚拟主机,不同端口映射到不同的站点: 将同一个端口映射成不同的域名,不同的域名映射到不同的站点. 我们只需要修 ...
- python_0基础开始_day05
第五节 一.字典 python的数据结构之一 字典 —— dict 定义:dic = {"key":"dajjlad"} 作用:存储数据,大量,将数据和数据起到 ...
- Office2019 VOL版本 自定义安装组件
众所周知,Office VOL版本可以连接KMS服务器激活,但是office2019没有镜像可以下载,所以只能依靠Office Deployment Tool来进行操作.注:Office2019 Re ...
- luogu1373_小a和uim之大逃离 多维dp
传送门 巧妙之处在于dp的设计只用设计差值即可,因此不会mle,枚举的顺序问题也解决了 #include <bits/stdc++.h> using namespace std; #def ...
- JavaMail的简单使用(自测可以发邮件)
在很多项目中我们都会遇到发送邮件的功能,发送邮件其实还是很实用的,正好今天做项目需要实现,现在来简单的整理一下发送邮件的实现. 建立邮件与服务器之间的会话 Properties props = new ...
- 送礼物「JSOI 2015」RMQ+01分数规划
[题目描述] 礼品店一共有N件礼物排成一列,每件礼物都有它的美观度.排在第\(i(1\leq i\leq N)\)个位置的礼物美观度为正整数\(A_I\).JYY决定选出其中连续的一段,即编号为礼物\ ...
- Oracle、MySQL和Sqlserver的事务管理、分页和别名的区别
1.在mysql中事务默认是自动提交的,只有设置autocommit为0的时候,才用自己commit(commit--rollback回滚) 2.但是在oracle中必须自己commit;不然就只能结 ...
- (十二)c#Winform自定义控件-分页控件
前提 入行已经7,8年了,一直想做一套漂亮点的自定义控件,于是就有了本系列文章. 开源地址:https://gitee.com/kwwwvagaa/net_winform_custom_control ...