转载:  https://www.cnblogs.com/shushen/p/5251070.html

下图描述了细分的基本思想,每次细分都是在每条边上插入一个新的顶点,可以看到随着细分次数的增加,折线逐渐变成一条光滑的曲线。曲面细分需要有几何规则和拓扑规则,几何规则用于计算新顶点的位置,拓扑规则用于确定新顶点的连接关系。下面介绍两种网格细分方法:Catmull-Clark细分和Loop细分。

Catmull-Clark subdivision

  Catmull-Clark细分是一种四边形网格的细分法则,每个面计算生成一个新的顶点,每条边计算生成一个新的顶点,同时每个原始顶点更新位置。下图为Catmull-Clark细分格式的细分掩膜,对于新增加的顶点位置以及原始顶点位置更新规则如下:

1.网格内部F-顶点位置:

  设四边形的四个顶点为v0、v1、v2、v3,则新增加的顶点位置为v = 1/4*(v0 + v1 + v2 + v3)。

2.网格内部V-顶点位置:

  设内部顶点v0的相邻点为v1、v2,…,v2n,则该顶点更新后位置为,其中α、β、γ分别为α = 1 - β - γ。

3.网格边界V-顶点位置:

  设边界顶点v0的两个相邻点为v1、v2,则该顶点更新后位置为v = 3/4*v0 + 1/8*(v1 + v2)。

4.网格内部E-顶点位置:

  设内部边的两个端点为v0、v1,与该边相邻的两个四边形顶点分别为v0、v1、v2、v3和v0、v1、v4、v5,则新增加的顶点位置为v = 1/4*(v0 + v1 + vf1 + vf2) = 3/8*(v0 + v1) + 1/16*(v2 + v3 + v4 + v5)。

5.网格边界E-顶点位置:

  设边界边的两个端点为v0、v1,则新增加的顶点位置为v = 1/2*(v0 + v1)。

效果:

function [VV, FF, S] = CC_subdivision(V, F, iter)
% Catmull_Clark subdivision
if ~exist('iter','var')
iter = 1;
end
VV = V;
FF = F; for i = 1:iter
nv = size(VV,1);
nf = size(FF,1); O = outline(FF); original = 1:nv;
boundary = O(:,1)';
interior = original(~ismember(original, boundary)); no = length(original);
nb = length(boundary);
ni = length(interior); %% Sv
Etmp = sort([FF(:,1) FF(:,2);FF(:,2) FF(:,3);FF(:,3) FF(:,4);FF(:,4) FF(:,1)],2);
[E, ~, idx] = unique(Etmp, 'rows'); Aeven = sparse([E(:,1) E(:,2)], [E(:,2) E(:,1)], 1, no, no);
Aodd = sparse([FF(:,1) FF(:,2)], [FF(:,3) FF(:,4)], 1, no, no);
Aodd = Aodd + Aodd'; val_even = sum(Aeven,2);
beta = 3./(2*val_even); val_odd = sum(Aodd,2);
gamma = 1./(4*val_odd); alpha = 1 - beta - gamma; Sv = sparse(no,no);
Sv(interior,:) = ...
sparse(1:ni, interior, alpha(interior), ni, no) + ...
bsxfun(@times, Aeven(interior,:), beta(interior)./val_even(interior)) + ...
bsxfun(@times, Aodd(interior,:), gamma(interior)./val_odd(interior));
Sboundary = ...
sparse([O(:,1);O(:,2)],[O(:,2);O(:,1)],1/8,no,no) + ...
sparse([O(:,1);O(:,2)],[O(:,1);O(:,2)],3/8,no,no);
Sv(boundary,:) = Sboundary(boundary,:); %% Sf
Sf = 1/4 .* sparse(repmat((1:nf)',1 ,4), FF, 1);
i0 = no + (1:nf)'; %% Se
flaps = sparse([idx;idx], ...
[FF(:,3) FF(:,4);FF(:,4) FF(:,1);FF(:,1) FF(:,2);FF(:,2) FF(:,3)], ...
1);
onboundary = (sum(flaps,2) == 2);
flaps(onboundary,:) = 0; ne = size(E,1);
Se = sparse( ...
[1:ne 1:ne]', ...
[E(:,1); E(:,2)], ...
[onboundary;onboundary].*1/2 + ~[onboundary;onboundary].*3/8, ...
ne, ...
no) + ...
flaps*1/16; %% new faces & new vertices
i1 = no + nf + (1:nf)';
i2 = no + 2*nf + (1:nf)';
i3 = no + 3*nf + (1:nf)';
i4 = no + 4*nf + (1:nf)'; FFtmp = [i0 i4 FF(:,1) i1; ...
i0 i1 FF(:,2) i2; ...
i0 i2 FF(:,3) i3; ...
i0 i3 FF(:,4) i4]; reidx = [(1:no)'; no+(1:nf)'; no+nf+idx];
FF = reidx(FFtmp); S = [Sv; Sf; Se];
VV = S*VV;
end
end

Loop subdivision

  Loop细分是一种三角形网格的细分法则,它按照1-4三角形分裂,每条边计算生成一个新的顶点,同时每个原始顶点更新位置。下图为Loop细分格式的细分掩膜,对于新增加的顶点位置以及原始顶点位置更新规则如下:

1.网格内部V-顶点位置:

  设内部顶点v0的相邻点为v1、v2,…,vn,则该顶点更新后位置为,其中

2.网格边界V-顶点位置:

  设边界顶点v0的两个相邻点为v1、v2,则该顶点更新后位置为v = 3/4*v0 + 1/8*(v1 + v2)。

3.网格内部E-顶点位置:

  设内部边的两个端点为v0、v1,相对的两个顶点为v2、v3,则新增加的顶点位置为v = 3/8*(v0 + v1) + 1/8*(v2 + v3)。

4.网格边界E-顶点位置:

  设边界边的两个端点为v0、v1,则新增加的顶点位置为v = 1/2*(v0 + v1)。

效果:

三维网格细分算法(Catmull-Clark subdivision & Loop subdivision)附源码(转载)的更多相关文章

  1. 三维网格精简算法(Quadric Error Metrics)附源码

    在计算机图形应用中,为了尽可能真实呈现虚拟物体,往往需要高精度的三维模型.然而,模型的复杂性直接关系到它的计算成本,因此高精度的模型在几何运算时并不是必须的,取而代之的是一个相对简化的三维模型,那么如 ...

  2. 三维网格精简算法(Quadric Error Metrics)附源码(转载)

    转载:  https://www.cnblogs.com/shushen/p/5311828.html 在计算机图形应用中,为了尽可能真实呈现虚拟物体,往往需要高精度的三维模型.然而,模型的复杂性直接 ...

  3. 网格测地线算法(Geodesics in Heat)附源码

    测地线又称为大地线,可以定义为空间曲面上两点的局部最短路径.测地线具有广泛的应用,例如在工业上测地线最短的性质就意味着最优最省,在航海和航空中,轮船和飞机的运行路线就是测地线.[Crane et al ...

  4. 卡通图像变形算法(Moving Least Squares)附源码

    本文介绍一种利用移动最小二乘法来实现图像变形的方法,该方法由用户指定图像中的控制点,并通过拖拽控制点来驱动图像变形.假设p为原图像中控制点的位置,q为拖拽后控制点的位置,我们利用移动最小二乘法来为原图 ...

  5. 基于Zlib算法的流压缩、字符串压缩源码

    原文:基于Zlib算法的流压缩.字符串压缩源码 Zlib.net官方源码demo中提供了压缩文件的源码算法.处于项目研发的需要,我需要对内存流进行压缩,由于zlib.net并无相关文字帮助只能自己看源 ...

  6. 三维网格细分算法(Catmull-Clark subdivision & Loop subdivision)附源码

    下图描述了细分的基本思想,每次细分都是在每条边上插入一个新的顶点,可以看到随着细分次数的增加,折线逐渐变成一条光滑的曲线.曲面细分需要有几何规则和拓扑规则,几何规则用于计算新顶点的位置,拓扑规则用于确 ...

  7. SM4密码算法(附源码)

    SM4是我们自己国家的一个分组密码算法,是国家密码管理局于2012年发布的.网址戳→_→:http://www.cnnic.NET.cn/jscx/mixbz/sm4/ 具体的密码标准和算法官方有非常 ...

  8. arcgis api 3.x for js 共享干货系列之一自写算法实现地图量算工具(附源码下载)

    0.内容概览 Geometry 地图服务方式实现地图距离以及面积的量算,简单描述 arcgis api 提供的接口类 geometryEngine 实现地图距离以及面积的量算,简单描述 自定义距离以及 ...

  9. sm4算法(附源码、测试代码)

    from:http://blog.csdn.net/mao0514/article/details/52930944 SM4是我们自己国家的一个分组密码算法,是国家密码管理局于2012年发布的.网址戳 ...

随机推荐

  1. MySQL学习——操作自定义函数

    MySQL学习——操作自定义函数 摘要:本文主要学习了使用DDL语句操作自定义函数的方法. 了解自定义函数 是什么 自定义函数是一种与存储过程十分相似的过程式数据库对象.它与存储过程一样,都是由SQL ...

  2. 通过JS屏蔽鼠标右键

    我也是第一次接触这个功能,只需一行代码即可搞定,直译过来就是“屏蔽上下文菜单”,特此记录一下吧. document.oncontextmenu = () => false;

  3. CSS语法规范一

    CSS语法规范 CSS规则由两个主要的部分构成:选择器以及一条或多条声明. p{ color: red; font-size: 12px; } CSS代码风格 样式格式书写 紧凑格式 h3 {colo ...

  4. 【C#】学习笔记(2)委托Delegate相关

    泛型委托类型,同样是根据杨老师的视频来的. 直接上栗子

  5. h5本地存储登录页面实现记住密码功能

    <!DOCTYPE html> <html> <head> <title></title> </head> <style ...

  6. rust 高级话题

    目录 rust高级话题 前言 零大小类型ZST 动态大小类型DST 正确的安装方法 结构体 复制和移动 特征对象 引用.生命周期.所有权 生命周期 错误处理 交叉编译 智能指针 闭包 动态分派和静态分 ...

  7. python获得多个输入值

    我们都知道python的input()函数是以字符串的形式输入的,这就产生了一个问题:当我们在一行内输入多个数值时,input()不会去判断输入元素个数,它只管把这行输入以字符串的形式输入,因此我们要 ...

  8. mac odoo 12 虚拟环境搭建及 依赖安装

    经过这几天的折腾,odoo 12 的虚拟环境总算搭建成了.网站有很多虚拟环境相关的搭建,但是都是写文章的自己清楚,但是文章里却描述不清楚. odoo 虚拟环境 这次搭建环境使用 odoo 12.0. ...

  9. docker镜像管理(二)

    docker镜像 docker镜像含有启动容器所需要的文件系统和内容,因此,其用于创建并启动docker容器 docker镜像采用分层构建机制,最底层为bootfs,其之为rootfs bootfs: ...

  10. [日常] git版本回退

    还没有push到远程的时候,版本回退的测试如下 先克隆一个空的测试仓库,这是我自己在gitlab里创建的空仓库git clone http://192.168.1.114:8090/admintsh/ ...