CodeForces - 1150 D Three Religions
题解:
id[ i ][ j ] 代表的是在第j个位置之后的第i个字符的位置在哪里。
dp[ i ][ j ][ k ] 代表的是 第一个串匹配到第i个位置, 第二个串匹配到第j个位置, 第三个串匹配到第k个位置之后,最后面一个字符的位置在哪里。
如果题目只询问一次,那么应该很容易想到n^3的写法。
for(int i = ; i <= n1; ++i){
for(int j = ; j <= n2; ++j){
for(int k = ; k <= n3; ++k){
if(i+j+k) dp[i][j][k] = n + ;
if(i) dp[i][j][k] = min(dp[i][j][k], id[ss[][i]-'a'][dp[i-][j][k]]);
if(j) dp[i][j][k] = min(dp[i][j][k], id[ss[][j]-'a'][dp[i][j-][k]]);
if(k) dp[i][j][k] = min(dp[i][j][k], id[ss[][k]-'a'][dp[i][j][k-]]);
}
}
但是,在一共有q次询问的前提下,肯定是不能每次询问都直接n^3的暴力得到的。
现在假如我们知道了 dp[3][4][6]的信息。
现在在第3个串后面加了一个字符,也就是说我们需要知道dp[3][4][7]的信息。
可以观察2遍的 n^3中的结果。
其中 for i from 0 to 3
for j from 0 to 4
for k from 0 to 6 的dp值和前面没有任何不同。
唯一区别的是 :
for i from 0 to 3
for j from 0 to 4
for k from 7 to 7 的dp值会发生变化。
所以我们只需要跑一边
for k from 7 to 7
for i from 0 to 3
for k from 0 to 4的dp值,更新这一块的dp值就好了。
如果 i + 1了 或者 j + 1了也是一样的道理。
所以每次更新所跑的值都是 len ^ 2。
最后的复杂度就是 q * len ^ 2. (len <= 250)。
代码:
#include<bits/stdc++.h>
using namespace std;
#define Fopen freopen("_in.txt","r",stdin); freopen("_out.txt","w",stdout);
#define LL long long
#define ULL unsigned LL
#define fi first
#define se second
#define pb push_back
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define lch(x) tr[x].son[0]
#define rch(x) tr[x].son[1]
#define max3(a,b,c) max(a,max(b,c))
#define min3(a,b,c) min(a,min(b,c))
typedef pair<int,int> pll;
const int inf = 0x3f3f3f3f;
const int _inf = 0xc0c0c0c0;
const LL INF = 0x3f3f3f3f3f3f3f3f;
const LL _INF = 0xc0c0c0c0c0c0c0c0;
const LL mod = (int)1e9+;
const int N = 1e5 + ;
char s[N];
int id[][N];
int dp[][][];
char ss[][N];
void Ac(){
int n, m;
scanf("%d%d", &n, &m);
scanf("%s", s+);
for(int i = ; i < ; ++i)
id[i][n+] = n+;
for(int j = n; j >= ; --j){
for(int i = ; i < ; ++i){
id[i][j] = id[i][j+];
}
if(j < n) id[s[j+]-'a'][j] = j+;
}
int l1, l2, l3, n1, n2, n3;
l1 = l2 = l3 = n1 = n2 = n3 = ;
char op[];
int t;
for(int _ = ; _ <= m; ++_){
scanf("%s", op);
if(op[] == '+'){
scanf("%d%s", &t, op);
if(t == ) {
++n1; ss[][n1] = op[];
for(int i = n1; i <= n1; ++i){
for(int j = ; j <= l2; ++j){
for(int k = ; k <= l3; ++k){
if(i+j+k) dp[i][j][k] = n + ;
if(i) dp[i][j][k] = min(dp[i][j][k], id[ss[][i]-'a'][dp[i-][j][k]]);
if(j) dp[i][j][k] = min(dp[i][j][k], id[ss[][j]-'a'][dp[i][j-][k]]);
if(k) dp[i][j][k] = min(dp[i][j][k], id[ss[][k]-'a'][dp[i][j][k-]]);
}
}
}
}
if(t == ) {
++n2; ss[][n2] = op[];
for(int j = n2; j <= n2; ++j){
for(int i = ; i <= l1; ++i){
for(int k = ; k <= l3; ++k){
if(i+j+k) dp[i][j][k] = n + ;
if(i) dp[i][j][k] = min(dp[i][j][k], id[ss[][i]-'a'][dp[i-][j][k]]);
if(j) dp[i][j][k] = min(dp[i][j][k], id[ss[][j]-'a'][dp[i][j-][k]]);
if(k) dp[i][j][k] = min(dp[i][j][k], id[ss[][k]-'a'][dp[i][j][k-]]);
}
}
}
}
if(t == ) {
++n3; ss[][n3] = op[];
for(int k = n3; k <= n3; ++k){
for(int i = ; i <= l1; ++i){
for(int j = ; j <= l2; ++j){
if(i+j+k) dp[i][j][k] = n + ;
if(i) dp[i][j][k] = min(dp[i][j][k], id[ss[][i]-'a'][dp[i-][j][k]]);
if(j) dp[i][j][k] = min(dp[i][j][k], id[ss[][j]-'a'][dp[i][j-][k]]);
if(k) dp[i][j][k] = min(dp[i][j][k], id[ss[][k]-'a'][dp[i][j][k-]]);
}
}
}
}
}
else {
scanf("%d", &t);
if(t == ) --n1;
if(t == ) --n2;
if(t == ) --n3;
}
l1 = n1; l2 = n2; l3 = n3;
if(dp[l1][l2][l3] != n + ) puts("YES");
else puts("NO");
}
}
int main(){
Ac();
return ;
}
/*
6 8
abdabc
+ 1 a
+ 1 d
+ 2 b
+ 2 c
*/
CodeForces - 1150 D Three Religions的更多相关文章
- CF 1150 D Three Religions——序列自动机优化DP
题目:http://codeforces.com/contest/1150/problem/D 老是想着枚举当前在给定字符串的哪个位置,以此来转移. 所以想对三个串分别建 trie 树,然后求出三个t ...
- Codeforces 1149 B - Three Religions
B - Three Religions 思路:dp dp[i][j][k]:a的前i个和b的前j个和c的前k个能构成的最前面的位置 删字符时状态不用改变,加字符时只会改变1*250*250个状态 代码 ...
- Codeforces Round #556 (Div. 2) - D. Three Religions(动态规划)
Problem Codeforces Round #556 (Div. 2) - D. Three Religions Time Limit: 3000 mSec Problem Descripti ...
- Codeforces Round #556 (Div. 2) D. Three Religions 题解 动态规划
题目链接:http://codeforces.com/contest/1150/problem/D 题目大意: 你有一个参考串 s 和三个装载字符串的容器 vec[0..2] ,然后还有 q 次操作, ...
- codeforces#1150D. Three Religions(dp+序列自动机)
题目链接: https://codeforces.com/contest/1150/problem/D 题意: 给出长度为$n$的字符串,和$q$次询问 每次询问是,给$x$宗教增加一个字符$key$ ...
- Three Religions CodeForces - 1149B (字符串,dp)
大意: 给定字符串S, 要求维护三个串, 支持在每个串末尾添加或删除字符, 询问S是否能找到三个不相交的子序列等于三个串. 暴力DP, 若不考虑动态维护的话, 可以直接$O(len^3)$处理出最少需 ...
- Codeforces 1050D Three Religions (dp+序列自动机)
题意: 给一个1e5的串str,然后有三个起始空串,不超过1000次操作,对三个字符串的一个尾部加一个字符或者减一个字符,保证每个字符不会超过250 每次操作之后询问你这三个串是不是可以组成str的子 ...
- Codeforces Educational Codeforces Round 5 C. The Labyrinth 带权并查集
C. The Labyrinth 题目连接: http://www.codeforces.com/contest/616/problem/C Description You are given a r ...
- Educational Codeforces Round 5
616A - Comparing Two Long Integers 20171121 直接暴力莽就好了...没什么好说的 #include<stdlib.h> #include&l ...
随机推荐
- Mac环境下升级gcc版本--rocksdb
前言 在mac环境下编译rocksdb,需要配置依赖的编译环境,其中有一项比较麻烦:c++编译要支持C++11,但是在mac环境安装xcode-select --install之后,已经安装有了gcc ...
- 一文了解:Redis基础类型
Redis基础类型 Redis特点 开源的,BSD许可高级的key-value存储系统 可以用来存储字符串,哈希结构,链表,集合 安装 windows:https://github.com/micro ...
- 神奇的 SQL 之子查询,细节满满 !
前言 开心一刻 有一天,麻雀遇见一只乌鸦. 麻雀问:你是啥子鸟哟 ? 乌鸦说:我是凤凰. 麻雀说:哪有你龟儿子这么黢黑的凤凰 ? 乌鸦说:你懂个铲铲,老子是烧锅炉的凤凰. 子查询 讲子查询之前,我们先 ...
- Why do I write a blog
I believe the most beautiful and elegant answer to this question is from Churchill. "On a peace ...
- SpringMVC的流程
Springmvc的流程 1.用户发送请求至前端控制器DispatcherServlet 2.DispatcherServlet收到请求后,调用HandlerMapping处理映射器,请求获取Hand ...
- Linux curl 表单登录或提交与cookie使用
本文主要讲解通过curl 实现表单提交登录.单独的表单提交与表单登录都差不多,因此就不单独说了. 说明:针对curl表单提交实现登录,不是所有网站都适用,原因是有些网站后台做了限制或有其他校验.我们不 ...
- python多线程同步实例分析
进程之间通信与线程同步是一个历久弥新的话题,对编程稍有了解应该都知道,但是细说又说不清.一方面除了工作中可能用的比较少,另一方面就是这些概念牵涉到的东西比较多,而且相对较深.网络编程,服务端编程,并发 ...
- Go中的命名规范
1.命名规范 1.1 Go是一门区分大小写的语言. 命名规则涉及变量.常量.全局函数.结构.接口.方法等的命名. Go语言从语法层面进行了以下限定:任何需要对外暴露的名字必须以大写字母开头,不需要对外 ...
- 100天搞定机器学习|Day19-20 加州理工学院公开课:机器学习与数据挖掘
前情回顾 机器学习100天|Day1数据预处理 100天搞定机器学习|Day2简单线性回归分析 100天搞定机器学习|Day3多元线性回归 100天搞定机器学习|Day4-6 逻辑回归 100天搞定机 ...
- (十)c#Winform自定义控件-横向列表
前提 入行已经7,8年了,一直想做一套漂亮点的自定义控件,于是就有了本系列文章. 开源地址:https://gitee.com/kwwwvagaa/net_winform_custom_control ...