一 背景

Spark社区为Spark Streaming提供了很多数据源接口,但是有些比较偏的数据源没有覆盖,由于公司技术栈选择,用了阿里云的MQ服务ONS,要做实时需求,要自己编写Receiver

二 技术实现

1.官网的例子已经比较详细,但是进入实践还需要慢慢调试,官方文档

2.实现代码,由三部分组成,receiver,inputstream,util

3.receiver代码

import java.io.Serializable
import java.util.Properties import com.aliyun.openservices.ons.api._
import com.aliyun.openservices.ons.api.impl.ONSFactoryImpl
import org.apache.spark.internal.Logging
import org.apache.spark.storage.StorageLevel
import org.apache.spark.streaming.receiver.Receiver class OnsReceiver(
cid: String,
accessKey: String,
secretKey: String,
addr: String,
topic: String,
tag: String,
func: Message => Array[Byte])
extends Receiver[Array[Byte]](StorageLevel.MEMORY_AND_DISK_2) with Serializable with Logging {
receiver => private var consumer: Consumer = null
private var workerThread: Thread = null override def onStart(): Unit = {
workerThread = new Thread(new Runnable {
override def run(): Unit = {
val properties = new Properties
properties.put(PropertyKeyConst.ConsumerId, cid)
properties.put(PropertyKeyConst.AccessKey, accessKey)
properties.put(PropertyKeyConst.SecretKey, secretKey)
properties.put(PropertyKeyConst.ONSAddr, addr)
properties.put(PropertyKeyConst.MessageModel, "CLUSTERING")
properties.put(PropertyKeyConst.ConsumeThreadNums, "50")
val onsFactoryImpl = new ONSFactoryImpl
consumer = onsFactoryImpl.createConsumer(properties)
consumer.subscribe(topic, tag, new MessageListener() {
override def consume(message: Message, context: ConsumeContext): Action = {
try {
receiver.store(func(message))
Action.CommitMessage
} catch {
case e: Throwable => e.printStackTrace()
Action.ReconsumeLater
}
}
})
consumer.start()
}
})
workerThread.setName(s"Aliyun ONS Receiver $streamId")
workerThread.setDaemon(true)
workerThread.start()
} override def onStop(): Unit = {
if (workerThread != null) {
if (consumer != null) {
consumer.shutdown()
} workerThread.join()
workerThread = null
logInfo(s"Stopped receiver for streamId $streamId")
}
}
}

input代码

import com.aliyun.openservices.ons.api.Message
import org.apache.spark.streaming.StreamingContext
import org.apache.spark.streaming.dstream.ReceiverInputDStream
import org.apache.spark.streaming.receiver.Receiver class OnsInputDStream(
@transient _ssc: StreamingContext,
cid: String,
topic: String,
tag: String,
accessKey: String,
secretKey: String,
addr:String,
func: Message => Array[Byte]
) extends ReceiverInputDStream[Array[Byte]](_ssc) { override def getReceiver(): Receiver[Array[Byte]] = {
new OnsReceiver(cid,accessKey,secretKey,addr,topic,tag,func)
} }

util代码

import com.aliyun.openservices.ons.api.Message
import org.apache.spark.annotation.Experimental
import org.apache.spark.streaming.StreamingContext
import org.apache.spark.streaming.dstream.{DStream, ReceiverInputDStream} object OnsUtils {
@Experimental
def createStream(
ssc: StreamingContext,
cid: String,
topic: String,
tag: String,
accessKey: String,
secretKey: String,
addr: String,
func: Message => Array[Byte]): ReceiverInputDStream[Array[Byte]] = {
new OnsInputDStream(ssc, cid, topic, tag, accessKey, secretKey, addr, func)
} @Experimental
def createStreams(
ssc: StreamingContext,
consumerIdTopicTags: Array[(String, String, String)],
accessKey: String,
secretKey: String,
addr: String,
func: Message => Array[Byte]): DStream[Array[Byte]] = {
val invalidTuples1 = consumerIdTopicTags.groupBy(e => (e._1, e._2)).filter(e => e._2.length > 1)
val invalidTuples2 = consumerIdTopicTags.map(e => (e._1, e._2)).groupBy(e => e._1).filter(e => e._2.length > 1)
if (invalidTuples1.size > 1 || invalidTuples2.size > 1) {
throw new RuntimeException("Inconsistent consumer subscription.")
} else {
ssc.union(consumerIdTopicTags.map({
case (consumerId, topic, tags) =>
createStream(ssc, consumerId, topic, tags, accessKey, secretKey, addr, func)
}))
}
} }

三 调用

val stream = (0 until 3).map(i => {
OnsUtils.createStream(ssc,
"CID",
"BI_CALL",
"call_log_ons",
config.getString("ons.access_key"),
config.getString("ons.sercet_key"),
config.getString("ons.ons_addr"),
func)
})
val unionStream = ssc.union(stream).foreachRDD(...)

stream可以决定设置多少个receiver,这个数量必须小于等于spark on yarn的num-executors,内存默认占用executors的内存的一半。

Spark Streaming自定义Receiver的更多相关文章

  1. spark Streaming的Receiver和Direct的优化对比

    Direct 1.简化并行读取:如果要读取多个partition,不需要创建多个输入DStream然后对它们进行union操作.Spark会创建跟Kafka partition一样多的RDD part ...

  2. spark streaming 3: Receiver 到 submitJobSet

     对于spark streaming来说,receiver是数据的源头.spark streaming的框架上,将receiver替换spark-core的以磁盘为数据源的做法,但是数据源(如监听某个 ...

  3. Spark Streaming自定义Receivers

    自定义一个Receiver class SocketTextStreamReceiver(host: String, port: Int( extends NetworkReceiver[String ...

  4. 9. Spark Streaming技术内幕 : Receiver在Driver的精妙实现全生命周期彻底研究和思考

        原创文章,转载请注明:转载自 听风居士博客(http://www.cnblogs.com/zhouyf/)       Spark streaming 程序需要不断接收新数据,然后进行业务逻辑 ...

  5. 4. Spark Streaming解析

    4.1 初始化StreamingContext import org.apache.spark._ import org.apache.spark.streaming._ val conf = new ...

  6. Spark Streaming Backpressure分析

    1.为什么引入Backpressure 默认情况下,Spark Streaming通过Receiver以生产者生产数据的速率接收数据,计算过程中会出现batch processing time > ...

  7. Spark Streaming性能优化: 如何在生产环境下应对流数据峰值巨变

    1.为什么引入Backpressure 默认情况下,Spark Streaming通过Receiver以生产者生产数据的速率接收数据,计算过程中会出现batch processing time > ...

  8. 【Streaming】30分钟概览Spark Streaming 实时计算

    本文主要介绍四个问题: 什么是Spark Streaming实时计算? Spark实时计算原理流程是什么? Spark 2.X下一代实时计算框架Structured Streaming Spark S ...

  9. 第12课:Spark Streaming源码解读之Executor容错安全性

    一.Spark Streaming 数据安全性的考虑: Spark Streaming不断的接收数据,并且不断的产生Job,不断的提交Job给集群运行.所以这就涉及到一个非常重要的问题数据安全性. S ...

随机推荐

  1. 【oracle】Oracle整理笔记

    原博主总结了很多技能和小技巧,本人觉的非常实用,转载记录下: Oracle学习笔记整理手册 作者:@smileNicky 链接:https://blog.csdn.net/u014427391/art ...

  2. 【设计模式】结构型03外观模式(Facade Pattern)

    [设计模式]结构型02装饰模式(Decorator Pattern) 意图:为子系统中的一组接口提供一个一致的界面,外观模式定义了一个高层接口,这个接口使得这一子系统更加容易使用. 主要解决:降低访问 ...

  3. 手把手docker部署java应用(初级篇)

    本篇原创发布于 Flex 的个人博客:点击跳转 前言   在没有 docker 前,项目转测试是比较麻烦的一件事.首先会化较长的时间搭建测试环境,然后在测试过程中又经常出现测试说是 bug,开发说无法 ...

  4. iOS开发如何避免安全隐患

    现在很多iOS的APP没有做任何的安全防范措施,导致存在很多安全隐患和事故,今天我们来聊聊iOS开发人员平时怎么做才更安全. 一.网络方面 用抓包工具可以抓取手机通信接口的数据.以Charles为例, ...

  5. JS的第一天,精彩内容

    1.JS 介绍 js的全称是JavaScript,它是一门前台语言 Java是一门后台语言 ,它们两个之间毫无关系 JavaScript的作者是布兰登,艾奇 前台语言:运行在客户端 后台语言:与数据库 ...

  6. 移动端布局(viewport)方法

    viewport默认有6个属性 width: 设置viewport的宽度(即之前所提及到的,浏览器的宽度详),这里可以为一个整数,又或者是字符串"width-device" ini ...

  7. 解读TIME_WAIT--你在网上看到的大多数帖子可能都是错误的

    由于TCP协议整个机制也非常复杂我只能尽可能的在某一条线上来说,不可能面面俱到,如果有疏漏或者对于内容有异议可以留言.谢谢大家. 查看服务器上各个状态的统计数量: netstat -ant | awk ...

  8. JVM内存结构解析

    月初的时候个人网站到期了,不想再折腾重新建站了,以后还是来第三方博客写文章吧,可以省去很多问题.之前写的文章也不是很多,备份懒得做了,从头开始吧.博文仅仅是用来记录和学习总结,如有错误之处请帮忙指正! ...

  9. kuangbin专题 专题二 搜索进阶 Escape HDU - 3533

    题目链接:https://vjudge.net/problem/HDU-3533 题目分析: 1.人不能经过碉堡; 2.敌军碉堡可能建到我军基地 3.子弹碰到碉堡就没了,说明子弹会被别的城堡给拦截下来 ...

  10. kuangbin专题 专题一 简单搜索 Pots POJ - 3414

    题目链接:https://vjudge.net/problem/POJ-3414 题意:给你两个杯子,分别容量为A(1),B(2)和一个C,C是需要经过下列操作,得到的一个升数.(1) FILL(i) ...