[综述]Deep Compression/Acceleration深度压缩/加速/量化
Survey
Recent Advances in Efficient Computation of Deep Convolutional Neural Networks, [arxiv '18]
A Survey of Model Compression and Acceleration for Deep Neural Networks [arXiv '17]
Quantization
- The ZipML Framework for Training Models with End-to-End Low Precision: The Cans, the Cannots, and a Little Bit of Deep Learning [ICML'17]
- Compressing Deep Convolutional Networks using Vector Quantization [arXiv'14]
- Quantized Convolutional Neural Networks for Mobile Devices [CVPR '16]
- Fixed-Point Performance Analysis of Recurrent Neural Networks [ICASSP'16]
- Quantized Neural Networks: Training Neural Networks with Low Precision Weights and Activations [arXiv'16]
- Loss-aware Binarization of Deep Networks [ICLR'17]
- Towards the Limit of Network Quantization [ICLR'17]
- Deep Learning with Low Precision by Half-wave Gaussian Quantization [CVPR'17]
- ShiftCNN: Generalized Low-Precision Architecture for Inference of Convolutional Neural Networks [arXiv'17]
- Training and Inference with Integers in Deep Neural Networks [ICLR'18]
- Deep Learning with Limited Numerical Precision[ICML'2015]
- Model compression via distillation and quantization [ICLR '18]
- Apprentice: Using Knowledge Distillation Techniques To Improve Low-Precision Network Accuracy [ICLR '18]
- On the Universal Approximability of Quantized ReLU Neural Networks [arXiv '18]
- Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference [CVPR '18]
- Binarized Neural Networks: Training Deep Neural Networks with Weights and Activations Constrained to +1 or -1 [NIPS '16]
- XNOR-Net: ImageNet Classification Using Binary Convolutional Neural Networks [ECCV '16]
- Binarized Convolutional Neural Networks with Separable Filters for Efficient Hardware Acceleration [CVPR '17]
- Maxout Networks
- BinaryConnect: Training Deep Neural Networks with binary weights during propagations
- Ternary weight networks
- From Hashing to CNNs: Training Binary Weight Networks via Hashing
- Learning Accurate Low-Bit Deep Neural Networks with Stochastic Quantization
- TRAINED TERNARY QUANTIZATION
- DOREFA-NET: TRAINING LOW BITWIDTH CONVOLUTIONAL NEURAL NETWORKS WITH LOW BITWIDTH GRADIENTS
- Two-Step Quantization for Low-bit Neural Networks
- LQ-Nets: Learned Quantization for Highly Accurate and Compact Deep Neural Networks
- Fixed-point Factorized Networks
- INCREMENTAL NETWORK QUANTIZATION: TOWARDS LOSSLESS CNNS WITH LOW-PRECISION WEIGHTS
- Network Sketching: Exploiting Binary Structure in Deep CNNs
- Towards Effective Low-bitwidth Convolutional Neural Networks
- SYQ: Learning Symmetric Quantization For Efficient Deep Neural Networks
- Very deep convolutional networks for large-scale image recognition
- Towards Accurate Binary Convolutional Neural Network
- Estimating or Propagating Gradients Through Stochastic Neurons for Conditional Computation
Pruning
- Learning both Weights and Connections for Efficient Neural Networks [NIPS'15]
- Pruning Filters for Efficient ConvNets [ICLR'17]
- Pruning Convolutional Neural Networks for Resource Efficient Inference [ICLR'17]
- Soft Weight-Sharing for Neural Network Compression [ICLR'17]
- Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding [ICLR'16]
- Dynamic Network Surgery for Efficient DNNs [NIPS'16]
- Designing Energy-Efficient Convolutional Neural Networks using Energy-Aware Pruning [CVPR'17]
- ThiNet: A Filter Level Pruning Method for Deep Neural Network Compression [ICCV'17]
- To prune, or not to prune: exploring the efficacy of pruning for model compression [ICLR'18]
- Data-Driven Sparse Structure Selection for Deep Neural Networks [arXiv '17]
- Learning Structured Sparsity in Deep Neural Networks [NIPS '16]
- Scalpel: Customizing DNN Pruning to the Underlying Hardware Parallelism [ISCA '17]
- Channel Pruning for Accelerating Very Deep Neural Networks [ICCV '17]
- Learning Efficient Convolutional Networks through Network Slimming [ICCV '17]
- NISP: Pruning Networks using Neuron Importance Score Propagation [CVPR '18]
- Rethinking the Smaller-Norm-Less-Informative Assumption in Channel Pruning of Convolution Layers [ICLR '18]
- MorphNet: Fast & Simple Resource-Constrained Structure Learning of Deep Networks [arXiv '17]
- Efficient Sparse-Winograd Convolutional Neural Networks [ICLR '18]
Low-rank Approximation
- Efficient and Accurate Approximations of Nonlinear Convolutional Networks [CVPR'15]
- Accelerating Very Deep Convolutional Networks for Classification and Detection (Extended version of above one)
- Convolutional neural networks with low-rank regularization [arXiv'15]
- Exploiting Linear Structure Within Convolutional Networks for Efficient Evaluation [NIPS'14]
- Compression of Deep Convolutional Neural Networks for Fast and Low Power Mobile Applications [ICLR'16]
- High performance ultra-low-precision convolutions on mobile devices [NIPS'17]
- Speeding up convolutional neural networks with low rank expansions
- Coordinating Filters for Faster Deep Neural Networks [ICCV '17]
Knowledge Distillation
- Dark knowledge
- FitNets: Hints for Thin Deep Nets [ICLR '15]
- Net2net: Accelerating learning via knowledge transfer [ICLR '16]
- Distilling the Knowledge in a Neural Network [NIPS '15]
- MobileID: Face Model Compression by Distilling Knowledge from Neurons [AAAI '16]
- DarkRank: Accelerating Deep Metric Learning via Cross Sample Similarities Transfer [arXiv '17]
- Deep Model Compression: Distilling Knowledge from Noisy Teachers [arXiv '16]
- Paying More Attention to Attention: Improving the Performance of Convolutional Neural Networks via Attention Transfer [ICLR '17]
- Like What You Like: Knowledge Distill via Neuron Selectivity Transfer [arXiv '17]
- Learning Efficient Object Detection Models with Knowledge Distillation [NIPS '17]
- Data-Free Knowledge Distillation For Deep Neural Networks [NIPS '17]
- A Gift from Knowledge Distillation: Fast Optimization, Network Minimization and Transfer Learnin [CVPR '17]
- Moonshine: Distilling with Cheap Convolutions [arXiv '17]
- Model compression via distillation and quantization [ICLR '18]
- Apprentice: Using Knowledge Distillation Techniques To Improve Low-Precision Network Accuracy [ICLR '18]
Miscellaneous
- Beyond Filters: Compact Feature Map for Portable Deep Model [ICML '17]
- SplitNet: Learning to Semantically Split Deep Networks for Parameter Reduction and Model Parallelization [ICML '17]
Reference
- [1] http://chenrudan.github.io/blog/2018/10/02/networkquantization.html
- [2] https://github.com/TerryLoveMl/Model-Compression-Papers
[综述]Deep Compression/Acceleration深度压缩/加速/量化的更多相关文章
- Deep Learning(深度学习)学习笔记整理
申明:本文非笔者原创,原文转载自:http://www.sigvc.org/bbs/thread-2187-1-3.html 4.2.初级(浅层)特征表示 既然像素级的特征表示方法没有作用,那怎样的表 ...
- 【转载】Deep Learning(深度学习)学习笔记整理
http://blog.csdn.net/zouxy09/article/details/8775360 一.概述 Artificial Intelligence,也就是人工智能,就像长生不老和星际漫 ...
- Deep Learning(深度学习)学习笔记整理系列之(八)
Deep Learning(深度学习)学习笔记整理系列 zouxy09@qq.com http://blog.csdn.net/zouxy09 作者:Zouxy version 1.0 2013-04 ...
- DEEP COMPRESSION小记
2016ICLR最佳论文 Deep Compression: Compression Deep Neural Networks With Pruning, Trained Quantization A ...
- [转载]Deep Learning(深度学习)学习笔记整理
转载自:http://blog.csdn.net/zouxy09/article/details/8775360 感谢原作者:zouxy09@qq.com 八.Deep learning训练过程 8. ...
- 【转】Deep Learning(深度学习)学习笔记整理系列之(八)
十.总结与展望 1)Deep learning总结 深度学习是关于自动学习要建模的数据的潜在(隐含)分布的多层(复杂)表达的算法.换句话来说,深度学习算法自动的提取分类需要的低层次或者高层次特征. 高 ...
- Deep Learning(深度学习)学习系列
目录: 一.概述 二.背景 三.人脑视觉机理 四.关于特征 4.1.特征表示的粒度 4.2.初级(浅层)特征表示 4.3.结构性特征表示 4.4 ...
- CUDA上深度学习模型量化的自动化优化
CUDA上深度学习模型量化的自动化优化 深度学习已成功应用于各种任务.在诸如自动驾驶汽车推理之类的实时场景中,模型的推理速度至关重要.网络量化是加速深度学习模型的有效方法.在量化模型中,数据和模型参数 ...
- Deep Learning(深度学习)整理,RNN,CNN,BP
申明:本文非笔者原创,原文转载自:http://www.sigvc.org/bbs/thread-2187-1-3.html 4.2.初级(浅层)特征表示 既然像素级的特征表示方法没有作用,那怎 ...
随机推荐
- go实现dgraph的各种操作
go实现dgraph的各种操作 import "github.com/dgraph-io/dgo" import "github.com/dgraph-io/dgo/pr ...
- 使用django执行数据更新命令时报错:django.db.migrations.exceptions.InconsistentMigrationHistory: Migration admin.0001_initial is applied before its dependency users.00 01_initial on database 'default'.
如果在重新封装更新用户表之前,已经更新了数据表,在数据库中已经有了django相关的依赖表,就会报错: django.db.migrations.exceptions.InconsistentMigr ...
- SDOI 2019 R1 摸鱼记
Day -1 学文化课第一天,也是这周最后一天. 昨晚 mxl 让我们今天下午放学走,大概六点的样子,感觉良好. 早读班主任送来请假条,跟我讲中午放学走??? 很懵逼,以为班主任口胡了,问了一句&qu ...
- xgboost-Python&R
sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频) https://study.163.com/course/introduction.htm?courseId=1005269003& ...
- 一个Ajax读数据并使用IScroll显示辅助类
花了2天时间对iscroll进行了一些封装,方便进行ajax读取数据和显示 1.IScroll直接使用的话还是挺麻烦的,特别是牵涉到分页加载动态加载数据时,以下是核心实现代码. 2.Loading提示 ...
- Servlet处理Json请求数据包
request.setCharacterEncoding('UTF-8'); response.setContentType('text/html;charset=UTF-8'); String ac ...
- 【vue】组件使用Deferred特性
延迟加载组件 defer的意思是"延迟",所以deferred对象的含义就是"延迟"到未来某个点再执行. <template> <div> ...
- zip4j压缩
使用的jar包:zip4j_1.3.2.jar 基本功能: 针对ZIP压缩文件创建.添加.分卷.更新和移除文件 (读写有密码保护的Zip文件) (支持AES 128/256算法加密) (支持标准Zip ...
- (二)ORB描述子提取源码思路与实现
ORBSLAM2中ORB特征提取的特点 ORBSLAM2中通过对OpenCV中的ORB特征点提取类进行修改,对图像进行分块提取,而后划分节点,使得每个节点中保存的特征点性能是该节点所有特征点中最好的. ...
- shiroUtil工具类
package com.chabansheng.util; import org.apache.shiro.SecurityUtils; import org.apache.shiro.authc.A ...