Improved Semantic Representations From Tree-Structured Long Short-Term Memory Networks-paper
Improved Semantic Representations From Tree-Structured Long Short-Term Memory Networks
作者信息:
Kai Sheng Tai Stanford University
Richard Socher MetaMind
Christopher D. Manning Stanford University
数据:
1)Stanford Sentiment Treebank 情感分为五类
2)Sentence Involving Compositional Knowledge(SICK) 句子对有相关性得分
1 introduction
Most models for distributed representations of phrases and sentences—that is, models where realvalued vectors are used to represent meaning—fall into one of three classes:
bag-of-words models-句子中的单词的序列关系看不出来
sequence models
tree-structured models.-包含了句法语义
与standard LSTM 相比, Tree-LSTM 有以下这行特性:
(1)Tree-LSTM 可能依赖多个子节点
(2)forget gate 可能有多个,与子节点的个数有关
本文给出两种tree-LSTM :
(1) Child-Sum Tree-LSTMs
(2) N-ary Tree-LSTMs
这篇文章介绍了将标准lstm改进为树结构一般化过程,在序列lstm上可以表示出句子的含义a generalization of
区别:
the standard LSTM composes -- hidden state from the input at the current time step and the hidden state of the LSTM unit in the previous time step,
the tree-structured LSTM, orTree-LSTM--composes its state from an input vector and the hidden states of arbitrarily many child units.
标准lstm是tree-lstm的一个特例,看做tree-lstm的每个内部节点只有一个孩子
2 Long Short-Term Memory Networks
Two commonly-used variants of the basic LSTM architecture :
the Bidirectional LSTM —— At each time step, the hidden state of the Bidirectional LSTM is the concatenation of the forward and backward hidden states.
the Multilayer LSTM (also known as the stacked or deep LSTM)—— the idea is to let the higher layers capture longerterm dependencies of the input sequence.
3Tree-Structured LSTMs
该论文提出两个结构:
the Child-Sum Tree-LSTM
and the N-ary Tree-LSTM.
Under the Tree-RNN framework,the vectorial representation associated with each node of a tree is composed as a function of the vectors corresponding to the children of the node. The choice of composition function gives rise to numerous variants of this basic framework.
Tree-RNNs have been used to parse images of natural scenes (Socher et al., 2011), compose phrase representations from word vectors (Socher et al., 2012), and classify the sentiment polarity of sentences (Socher et al., 2013).
4 models
tree-LSTM的两个应用:
(1)classification
hjj 就是利用tree-LSTM计算出的node j 的embedding
(2) Semantic relatedness of Sentence Pairs
hLL 和 hRR 是利用Tree-LSTM对两个句子的embedding representations, 经过上面一系列公式的操作比较两个句子的senmantic relatedness
6 Results
指标:
1)Pearson's
2)Spearman's
3)MSE
6.1 Sentiment Classification
细腻度情感分析Fine-grained: 5-class sentiment classification.
Binary: positive/negative sentiment classification.
微调有助于区分更细腻度的区分度
对于细腻度情感分析来说bi-lstm比lstm更更好,但是对于二分类来说效果差不多,猜测是由于细腻度的需要更多输入向量表示和隐藏层有更多更复杂的互动,而二分类中想要保留的分类的状态lstm已经足够去保持
6.2 Semantic Relatedness
--------------------------------------------------
斯坦福的sentiment treebank:
treebank的形式如下
(0 (1 You) (2 (3 can) (4 (5 (6 run) (7 (8 this) (9 code))) (10 (11 with) (12 (13 (14 our) (15 (16 trained) (17 model))) (18 (19 on) (20 (21 (22 text) (23 files)) (24 (25 with) (26 (27 the) (28 (29 following) (30 command)))))))))))
这是句子“You can run this code with our trained model on text files with the following command”经过stanford模型计算后得到的情感treebank形式。
每个括号中的第一个元素为规则的头,比如对于左右两边都只有一个节点的规则:
(1 You): 1->You , 1表示的是NON-Terminal字符,You表示terminal字符,和标准的pennetreebank的区别是1代表的是这个节点的情感强度,分五个等级。
(0 (1 You) (2 (3 can)…) :
在这个规则里,右边有两个节点,是一个标准的二叉树,0-> 1, 2。
Improved Semantic Representations From Tree-Structured Long Short-Term Memory Networks-paper的更多相关文章
- LSTM学习—Long Short Term Memory networks
原文链接:https://colah.github.io/posts/2015-08-Understanding-LSTMs/ Understanding LSTM Networks Recurren ...
- Improved Semantic Representations From Tree-Structured Long Short-Term Memory Networks(1)
今天和陈驰,汪鑫讨论了一下,借此记录一下想法. 关于这篇论文,要弄清的地方有: 1.LSTMtree到底是从上往下还是从下往上学的,再确认一下 2.关于每个节点的标注问题 3.label的值到底该怎么 ...
- 论文阅读及复现 | Improved Semantic Representations From Tree-Structured Long Short-Term Memory Networks
两种形式的LSTM变体 Child-Sum Tree-LSTMs N-ary Tree-LSTMs https://paperswithcode.com/paper/improved-semantic ...
- LSTM(Long Short Term Memory)
长时依赖是这样的一个问题,当预测点与依赖的相关信息距离比较远的时候,就难以学到该相关信息.例如在句子”我出生在法国,……,我会说法语“中,若要预测末尾”法语“,我们需要用到上下文”法国“.理论上,递归 ...
- (转)The Neural Network Zoo
转自:http://www.asimovinstitute.org/neural-network-zoo/ THE NEURAL NETWORK ZOO POSTED ON SEPTEMBER 14, ...
- RNN 入门教程 Part 4 – 实现 RNN-LSTM 和 GRU 模型
转载 - Recurrent Neural Network Tutorial, Part 4 – Implementing a GRU/LSTM RNN with Python and Theano ...
- [转] Understanding-LSTMs 理解LSTM
图文并茂,讲得极清晰. 原文:http://colah.github.io/posts/2015-08-Understanding-LSTMs/ colah's blog Blog About Con ...
- 循环神经(LSTM)网络学习总结
摘要: 1.算法概述 2.算法要点与推导 3.算法特性及优缺点 4.注意事项 5.实现和具体例子 6.适用场合 内容: 1.算法概述 长短期记忆网络(Long Short Term Memory ne ...
- IMPLEMENTING A GRU/LSTM RNN WITH PYTHON AND THEANO - 学习笔记
catalogue . 引言 . LSTM NETWORKS . LSTM 的变体 . GRUs (Gated Recurrent Units) . IMPLEMENTATION GRUs 0. 引言 ...
随机推荐
- python输入整数
#!/usr/bin/env python#ecoding=utf-8'''Created on 2017年11月2日 @author: James zhan''' def fun(n): if n= ...
- java根据#号截取字符串,使用Pattern的方法
public class Regex1 { public static void main(String[] args) { String s = "神秘的海洋出现了一只#话题#海怪阿拉斯加 ...
- WPF拖动总结
https://www.cnblogs.com/DebugLZQ/archive/2013/05/07/3062733.html <Window xmlns="http://schem ...
- javascript数据基本类型和引用数据类型区别
基本类型和引用数据类型区别 1.基本数据类型和引用数据类型 javascript中有两种数据类型,分别是基本数据类型和引用数据类型: 基本数据(原始数据)类型指的是简单的数据段,而引用数据类型则指的是 ...
- C# [Win32] [API] Layered Windows
static void* WndProc(void* hwnd, uint uMsg, void* wParam, void* lParam) { switch (uMsg) { case WM_PA ...
- 在状态栏增加图标(Android 6.0)
在Android 启动之后,在SystemServer.java的run方法中,调用了StatusBarManagerService的构造方法,在StatusBarManagerService的构造方 ...
- HYPERSPACE
Windows中,不管是应用程序还是内核程序,都不能直接访问物理内存,所有非IO指令都只能访问虚拟内存地址,如Mov eax, DWORD PTR[虚拟地址]形式,但是,有时候,我们明明已经知道了某个 ...
- ShellExecute, WinExec与CreateProcess
0x01 ShellExecute ShellExecute的功能是运行一个外部程序(或者是打开一个已注册的文件.打开一个目录.打印一个文件等等),并对外部程序有一定的控制. 函数原型: Shel ...
- Delphi中播放Flash
在delphi中可以直接打开flash动画,并控制它播放和停止,还可以得到它的总帧数. 具体操作步骤:①Component -> Import ActiveX Contrals -> Sh ...
- dapper.simplecurd
[Table("Users")]//真实表名 publicclass User { [Key] publicint UserId { get; set; } [Column(&qu ...