题目分析:

这题的目标是求$$ \sum_{i \in [0,n),k \mid i} \binom{n}{i}G^i $$

这个形式很像单位根反演。

单位根反演一般用于求:$ \sum_{i \in [0,n),k \mid i} \binom{n}{i}f(x)^i $

推理过程略,实际上也就是交换求和符号的事情。

接着就变成裸的矩阵快速幂了

代码:

 #include<bits/stdc++.h>
using namespace std; int m,k,p;long long n;
int l,s,t,gg; struct mat{int arr[][];}G,bs,mmp;
vector<int> fac; // factor of p void buildbase(int w){
for(int i=;i<=m;i++)
for(int j=;j<=m;j++) bs.arr[i][j] = 1ll*w*G.arr[i][j]%p;
for(int i=;i<=m;i++) bs.arr[i][i] ++,bs.arr[i][i] %= p;
} mat operator*(mat alpha,mat beta){
memset(mmp.arr,,sizeof(mmp.arr));
for(int k=;k<=m;k++){
for(int i=;i<=m;i++){
for(int j=;j<=m;j++){
mmp.arr[i][j] += 1ll*alpha.arr[i][k]*beta.arr[k][j]%p;
mmp.arr[i][j] %= p;
}
}
}
return mmp;
} mat res;
mat fstpow(mat now,long long pw){
memset(res.arr,,sizeof(res.arr));
for(int i=;i<=m;i++) res.arr[i][i] = ;
long long bit = ;
while(bit <= pw){
if(bit & pw){res = res*bs;}
bs = bs*bs;bit<<=;
}
return res;
} void init(){
memset(G.arr,,sizeof(G.arr));
fac.clear();
l = s = t = gg = ;
} void read(){
scanf("%d%d%d",&l,&s,&t);
for(int i=;i<=l;i++){
int u,v; scanf("%d%d",&u,&v);
G.arr[u][v]++;
}
} int fast_pow(int now,int pw){
int ans = ,dt = now,bit = ;
while(bit <= pw){
if(bit & pw){ans = 1ll*ans*dt%p;}
dt = 1ll*dt*dt%p; bit<<=;
}
return ans;
} void getgg(){
int z = p-;
for(int i=;i*i<=z;i++){
if(z % i == ){
fac.push_back(i);
while(z % i == ) z /= i;
}
}
if(z != ) fac.push_back(z);
for(int i=;i<=p;i++){
int flag = true;
for(int j=;j<fac.size();j++){
int z = fast_pow(i,(p-)/fac[j]);
if(z == ){flag = false; break;}
}
if(flag){gg = i;break;}
}
gg = fast_pow(gg,(p-)/k);
} void work(){
int w = ,ans = ;
for(int i=;i<k;i++,w = 1ll*w*gg%p){
buildbase(w);
bs = fstpow(bs,n);
ans += bs.arr[s][t]; ans%=p;
}
ans = 1ll*ans*fast_pow(k,p-)%p;
printf("%d\n",ans);
} int main(){
while(scanf("%d%lld%d%d",&m,&n,&k,&p) == ){
init();
read();
getgg();
work();
}
return ;
}

POJChallengeRound2 Guideposts 【单位根反演】【快速幂】的更多相关文章

  1. 【BZOJ3328】PYXFIB(单位根反演,矩阵快速幂)

    [BZOJ3328]PYXFIB(单位根反演,矩阵快速幂) 题面 BZOJ 题解 首先要求的式子是:\(\displaystyle \sum_{i=0}^n [k|i]{n\choose i}f_i\ ...

  2. bzoj3328: PYXFIB(单位根反演+矩阵快速幂)

    题面 传送门 题解 我们设\(A=\begin{bmatrix}1 & 1 \\ 1 & 0\end{bmatrix}\),那么\(A^n\)的左上角就是\(F\)的第\(n\)项 所 ...

  3. 2019.2.25考试T1, 矩阵快速幂加速递推+单位根反演(容斥)

    \(\color{#0066ff}{题解}\) 然后a,b,c通过矩阵加速即可 为什么1出现偶数次3没出现的贡献是上面画绿线的部分呢? 考虑暴力统计这部分贡献,答案为\(\begin{aligned} ...

  4. 【bzoj3684】 大朋友和多叉树 生成函数+多项式快速幂+拉格朗日反演

    这题一看就觉得是生成函数的题... 我们不妨去推下此题的生成函数,设生成函数为$F(x)$,则$[x^s]F(x)$即为答案. 根据题意,我们得到 $F(x)=x+\sum_{i∈D} F^i(x)$ ...

  5. 数学--数论--HDU 4675 GCD of Sequence(莫比乌斯反演+卢卡斯定理求组合数+乘法逆元+快速幂取模)

    先放知识点: 莫比乌斯反演 卢卡斯定理求组合数 乘法逆元 快速幂取模 GCD of Sequence Alice is playing a game with Bob. Alice shows N i ...

  6. BZOJ3561 DZY Loves Math VI 数论 快速幂 莫比乌斯反演

    原文链接http://www.cnblogs.com/zhouzhendong/p/8116330.html UPD(2018-03-26):回来重新学数论啦.之前的博客版面放在更新之后的后面. 题目 ...

  7. BZOJ3328 PYXFIB 单位根反演

    题意:求 \[ \sum_{i=0}^n[k|i]\binom{n}{i}Fib(i) \] 斐波那契数列有简单的矩阵上的通项公式\(Fib(n)=A^n_{1,1}\).代入得 \[ =\sum_{ ...

  8. 数学杂烩总结(多项式/形式幂级数+FWT+特征多项式+生成函数+斯特林数+二次剩余+单位根反演+置换群)

    数学杂烩总结(多项式/形式幂级数+FWT+特征多项式+生成函数+斯特林数+二次剩余+单位根反演+置换群) 因为不会做目录所以请善用ctrl+F 本来想的是笔记之类的,写着写着就变成了资源整理 一些有的 ...

  9. loj#6485. LJJ 学二项式定理(单位根反演)

    题面 传送门 题解 首先你要知道一个叫做单位根反演的东西 \[{1\over k}\sum_{i=0}^{k-1}\omega^{in}_k=[k|n]\] 直接用等比数列求和就可以证明了 而且在模\ ...

随机推荐

  1. [JS设计模式]:单例模式(1)

    什么是单例模式 所谓单例,就是一个类只有一个实例,实现的方法一般是先判断是否存在实例,如果存在就直接返回,如果不存在就创建了再返回.这样确保了一个类只有一个实例对象. 实现的单例有很多种方式,最简单的 ...

  2. BGP:我们不生产路由,而是路由的搬运工

    1.BGP协议自身不能生产路由,它主要通过配置来将本地路由进行发布或者引入其他路由协议产生的路由. 有两种方法, 方法一.在BGP视图下,通过network命令将本地路由发布到BGP路由表中, 通过本 ...

  3. iOS----------常用三方库

    1.笔者常用三方库 名称 作用 说明 <small>AFNetworking <small>基于HTTP/HTTPS 联网请求 <small> <small& ...

  4. Python 序列化模块(json,pickle,shelve)

    json模块 JSON (JavaScript Object Notation):是一个轻量级的数据交换格式模块,受javascript对象文本语法启发,但不属于JavaScript的子集. 常用方法 ...

  5. LeetCode算法题-Quad Tree Intersection(Java实现)

    这是悦乐书的第260次更新,第273篇原创 01 看题和准备 今天介绍的是LeetCode算法题中Easy级别的第127题(顺位题号是558).四叉树是树数据,其中每个内部节点恰好有四个子节点:top ...

  6. 在java web项目中实现随项目启动的额外操作

    前言 在web项目中经常会遇到在项目启动初始,会要求做一些逻辑的实现,比如实现一个消息推送服务,实现不同类型数据同步的回调操作初始化,或则通知其他客户服务器本项目即将启动,等等.对于这种要求,目前个人 ...

  7. [经验总结] 从其它sheet页引用数据生成图表时没有图例的解决办法

    1.先给出一个在有数据区域的sheet页中生成的图表,比较全,图表和图例全部都有,如下图: 2.但是如果在其它 sheet页中引用该有数据的sheet数据时并生成图表,生成的图表只有图表区域显示,图例 ...

  8. LeetCode练习4 找出这两个有序数组的中位数

    给定两个大小为 m 和 n 的有序数组 nums1 和 nums2. 请你找出这两个有序数组的中位数,并且要求算法的时间复杂度为 O(log(m + n)). 你可以假设 nums1 和 nums2  ...

  9. 性能测试中的最佳用户数、最大用户数、TPS、响应时间、吞吐量和吞吞吐率

    一:最佳用户数.最大用户数 转:http://www.cnblogs.com/jackei/archive/2006/11/20/565527.html 二:  事务.TPS 1:事务:就是用户某一步 ...

  10. 问题记录2019-03-06(todo)

    RuntimeError: maximum recursion depth exceeded while calling a Python object