题目链接

题意

求三元组的严格上升子序列

思路

先考虑暴力\(dp\)一下

for(int i = 1;i <= n;++i)
for(int j = 1;j < i;++j)
if(x[i] > x[j] && y[i] > y[j] && z[i] > z[j])
f[i] = max(f[i],f[j] + 1)

考虑用\(CDQ\)分治优化这个\(dp\)。

大体思路是,先按照第一维排序,保证第一维是严格上升的。然后\(CDQ\)一下第二维。树状数组维护第三维(需要先离散化)。这里用到的是树状数组维护前缀最大值。

有两个\(bug\)调了很久。

bug1

直接套用了三维偏序的板子。其实这个题在\(CDQ\)的时候是不能像这样的

void cdq(int l,int r) {
if(r <= l) return;
cdq(l,mid),cdq(mid + 1,r);
//……
}

因为在\(cdq\)右边之前,必须保证右边已经从左边获取过答案了。这就是求\(LIS\)与求三维偏序不同的地方。

正确操作应该是

void cdq(int l,int r){
if(r <= l) return;
cdq(l,mid);
//……
cdq(mid + 1,r)
}

其实这个\(bug\)挺\(low\)的,感觉自己智障了2333

bug2

因为题目中说必须是严格递增的。所以\(mid\)的位置就不能直接取中间了。

需要找到一个\(x[mid]\)与\(x[mid + 1]\)不同的位置。

代码

/*
* @Author: wxyww
* @Date: 2019-02-15 10:45:05
* @Last Modified time: 2019-02-16 15:29:12
*/
#include<cstdio>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<queue>
#include<map>
#include<vector>
#include<ctime>
using namespace std;
typedef long long ll;
const int N = 300000 + 10;
map<int,int>ma;
ll read() {
ll x=0,f=1;char c=getchar();
while(c<'0'||c>'9') {
if(c=='-') f=-1;
c=getchar();
}
while(c>='0'&&c<='9') {
x=x*10+c-'0';
c=getchar();
}
return x*f;
}
int ls[N],tree[N];
struct node {
int x[10],ans;
}a[N];
ll A,P,n;
int js;
void clear(int pos) {
while(pos <= js) {
tree[pos] = 0;
pos += pos & -pos;
}
}
void update(int pos,int x) {
while(pos <= js) {
tree[pos] = max(x,tree[pos]);
pos += pos & -pos;
}
}
int query(int pos) {
int ret = 0;
while(pos) {
ret = max(ret,tree[pos]);
pos -= pos & -pos;
}
return ret;
}
node tmp[N];
bool cmp(node x,node y) {
if(x.x[1] != y.x[1])
return x.x[1] < y.x[1];
if(x.x[2] != y.x[2]) return x.x[2] < y.x[2];
return x.x[3] < y.x[3];
}
bool cmy(node x,node y) {
if(x.x[2] != y.x[2]) return x.x[2] < y.x[2];
return x.x[3] < y.x[3];
}
void cdq(int l,int r) {
if(r <= l) return;
//保证右边第一维严格大于左边
sort(a + l,a + r + 1,cmp);
int mid = (l + r) >> 1; int tt = 1e9;
for(int i = l;i < r;++i) if(a[i].x[1] != a[i + 1].x[1] && abs(mid - i) < abs(mid - tt)) tt = i;
if(tt == 1e9) return;
mid = tt;
//保证两边第二维分别有序
cdq(l,mid);
sort(a + l,a + mid + 1,cmy);
sort(a + mid + 1,a + r + 1,cmy);
int L = l,R = mid + 1,now = l;
while(L <= mid && R <= r) {
if(a[L].x[2] <= a[R].x[2]) {
update(a[L].x[3],a[L].ans);
++L;
}
else a[R].ans = max(a[R].ans,query(a[R].x[3] - 1) + 1),++R;
}
while(R <= r) a[R].ans = max(a[R].ans,query(a[R].x[3] - 1) + 1),++R;
for(int i = l;i <= L;++i) clear(a[i].x[3]);
cdq(mid + 1,r);
}
int main() {
A = read(),P = read(),n = read();
ll now = 1;
int tot = 0;
for(int i = 1;i <= n;++i)
for(int j = 1;j <= 3;++j)
ls[++tot] = a[i].x[j] = now = now * A % P,a[i].ans = 1; sort(ls + 1,ls + tot + 1);
ma[ls[1]] = ++js;
for(int i = 2;i <= tot;++i) if(ls[i] != ls[i - 1]) ma[ls[i]] = ++js;
for(int i = 1;i <= n;++i) {
for(int j = 1;j <= 3;++j)
a[i].x[j] = ma[a[i].x[j]];
sort(a[i].x + 1,a[i].x + 4);
} cdq(1,n);
int ans = 0;
for(int i = 1;i <= n;++i) ans = max(ans,a[i].ans);
cout<<ans;
return 0;
}

bzoj2253 纸箱堆叠的更多相关文章

  1. bzoj2253纸箱堆叠(动态规划+cdq分治套树状数组)

    Description P 工厂是一个生产纸箱的工厂.纸箱生产线在人工输入三个参数 n p a , 之后,即可自动化生产三边边长为 (a mod P,a^2 mod p,a^3 mod P) (a^4 ...

  2. 【BZOJ2253】[2010 Beijing wc]纸箱堆叠 cdq分治

    [BZOJ2253][2010 Beijing wc]纸箱堆叠 Description P 工厂是一个生产纸箱的工厂.纸箱生产线在人工输入三个参数 n p a , , 之后,即可自动化生产三边边长为 ...

  3. BZOJ2253: [2010 Beijing wc]纸箱堆叠

    题解: 其实就是求三维偏序最长链.类似于三维逆序对,我们可以用树状数组套平衡树来实现. DP方程 :f[i]=max(f[j]+1) a[j]<a[i] 我们按一维排序,另一位建立树状数组,把第 ...

  4. 【BZOJ2253】纸箱堆叠 [CDQ分治]

    纸箱堆叠 Time Limit: 30 Sec  Memory Limit: 256 MB[Submit][Status][Discuss] Description P 工厂是一个生产纸箱的工厂. 纸 ...

  5. 纸箱堆叠 bzoj 2253

    纸箱堆叠 (1s 128MB) box [问题描述] P 工厂是一个生产纸箱的工厂.纸箱生产线在人工输入三个参数 n, p, a 之后,即可自动化生产三边边长为 (a mod P, a^2 mod p ...

  6. BZOJ 2253: [2010 Beijing wc]纸箱堆叠

    题目 2253: [2010 Beijing wc]纸箱堆叠 Time Limit: 30 Sec  Memory Limit: 256 MBSubmit: 239  Solved: 94 Descr ...

  7. BZOJ_2253_[2010 Beijing wc]纸箱堆叠 _CDQ分治+树状数组

    BZOJ_2253_[2010 Beijing wc]纸箱堆叠 _CDQ分治+树状数组 Description P 工厂是一个生产纸箱的工厂.纸箱生产线在人工输入三个参数 n p a , , 之后, ...

  8. BZOJ2253 2010 Beijing wc 纸箱堆叠 CDQ分治

    这题之前度娘上没有CDQ分治做法,gerwYY出来以后写了一个.不过要sort3遍,常数很大. gerw说可以类似划分树的思想优化复杂度,但是蒟蒻目前不会划分树(会了主席树就懒得去弄了). 嗯 将me ...

  9. 【BZOJ】2253: [2010 Beijing wc]纸箱堆叠

    题意 三维严格偏序最长链.(\(n \le 50000\)) 分析 按第一维排序然后以第二和第三维作为关键字依次加入一个二维平面,维护前缀矩形最大值. 题解 当然可以树套树....可是似乎没有随机化算 ...

随机推荐

  1. 如何为 .NET Core CLI 启用 TAB 自动补全功能

    如何为 .NET Core CLI 启用 TAB 自动补全功能 Intro 在 Linux 下经常可以发现有些目录/文件名,以及有些工具可以命令输入几个字母之后按 TAB 自动补全,最近发现其实 do ...

  2. 使用mysqlhelper可以连接mysql

    已经验证OK通过. 参考地址: https://www.oschina.net/code/snippet_579976_48967 https://files.cnblogs.com/files/mo ...

  3. PJProject(2.6) 工程介绍

    pjlib pjlib\build\pjlib.vcproj pjlib_test pjlib\build\pjlib_test.vcproj pjsip_core pjsip\build\pjsip ...

  4. Linux Shell 返回值之 PIPESTATUS

    BASH SHELL中,通常使用 $? 来获取上一条命令的返回码,对于管道中的命令,使用$?只能获取管道中最后一条命令的返回码,例如: 下面的例子 /djdjal/dajiojidksj.file是一 ...

  5. oracle nvl2函数

    nvl2(v1, v2, v3) 定义:如果v1为空,返回v3: 不为空,返回v2 nvl2要求v2,v3的类型一致,不一致会发生类型转换.问题:最终返回值类型是v2的类型还是v3的类型? 看题目:n ...

  6. 树莓派Ubuntu 16.04 MATA系统 修改用户文件夹名后,提示configure it with blueman-service

    自从修改了树莓派的Ubuntu 16.04 MATA 系统的 /home/ 下的用户文件夹名后,使用vncserver远程操作,看到桌面每次都提示 Configured directory for i ...

  7. SQLServer之视图简介

    视图定义 视图是一个虚拟表,其内容由查询定义. 同表一样,视图包含一系列带有名称的列和行数据. 视图在数据库中并不是以数据值存储集形式存在,除非是索引视图. 行和列数据来自由定义视图的查询所引用的表, ...

  8. vue 对象提供的属性功能、通过axio请求数据(2)

    1 Vue对象提供的属性功能 1.1 过滤器 过滤器,就是vue允许开发者自定义的文本格式化函数,可以使用在两个地方:输出内容和操作数据中. 1.1.1 使用Vue.filter()进行全局定义(全局 ...

  9. SQL Server百万级大数据量删除

    删除一个表中的部分数据,数据量百万级. 一般delete from 表 delete from 表名 where 条件: 此操作可能导致,删除操作执行的时间长:日志文件急速增长: 针对此情况处理 de ...

  10. android 图片上传图片 报Socket: Broken pipe

    上传图片的时候报如下错误: 上传失败的原因是服务器限制了文件上传的大小.让服务端改一下配置文件就好了