Pandas系列(一)-Series详解
一、初始Series
Series 是一个带有 名称 和索引的一维数组,既然是数组,肯定要说到的就是数组中的元素类型,在 Series 中包含的数据类型可以是整数、浮点、字符串、Python对象等。
pandas.Series(data=None, index=None, dtype=None, name=None, copy=False, fastpath=False)
创建第一个Series
import pandas as pd
user_age = pd.Series(data=[18, 30, 25, 40])
user_age.index = ["Tom", "Bob", "Mary", "James"] #加索引
user_age.index.name = "name" #索引加名字
user_age.name="user_age_info" #series加名字
user_age
Out[4]:
name
Tom 18
Bob 30
Mary 25
James 40
Name: user_age_info, dtype: int64
- 创建Series的方式
- 列表方式创建
pd.Series([],index=[])
- 字典方式创建
pd.Series({}
# 方式一
t = pd.Series([1,2,3,4,43],index=list('asdfg'))
print(t)
a 1
s 2
d 3
f 4
g 43
dtype: int64 #方式二
temp_dict = {'name':'xiaohong','age':30,'tel':10086}
t2 = pd.Series(temp_dict)
t2
Out[10]:
name xiaohong
age 30
tel 10086
dtype: object import string
#字典推导式
a = {string.ascii_uppercase[i]:i for i in range(10)}
print(a)
print(pd.Series(a))
print(pd.Series(a,index=list(string.ascii_uppercase[5:15])))
{'A': 0, 'B': 1, 'C': 2, 'D': 3, 'E': 4, 'F': 5, 'G': 6, 'H': 7, 'I': 8, 'J': 9}
A 0
B 1
C 2
D 3
E 4
F 5
G 6
H 7
I 8
J 9
dtype: int64
F 5.0
G 6.0
H 7.0
I 8.0
J 9.0
K NaN
L NaN
M NaN
N NaN
O NaN
dtype: float64
创建series实例
- 手动指定数据类型
#手动指定类型
name = ["Tom", "Bob", "Mary", "James"]
user_age = pd.Series(data=[18, 30, 25, 40], index=name, name="user_age_info", dtype=float)
user_age
Out[7]:
Tom 18.0
Bob 30.0
Mary 25.0
James 40.0
Name: user_age_info, dtype: float64
二、Series的索引
- series索引有五种方式:索引、序号、逻辑值查找、切片,数组
name = pd.Index(["Tom", "Bob", "Mary", "James"], name="name")
user_age = pd.Series(data=[18, 30, 25, 40], index=name, name="user_age_info")
"""按索引、序号,逻辑值查找,切片"""
user_age['Tom'] # 索引
Out[14]: 18
user_age.get('Tom') # get方式
Out[15]: 18
user_age[0] # 序号
Out[16]: 18
user_age[:3] # 切片
Out[17]:
name
Tom 18
Bob 30
Mary 25
Name: user_age_info, dtype: int64
user_age[user_age>25] # 逻辑值查找
Out[18]:
name
Bob 30
James 40
Name: user_age_info, dtype: int64
user_age[[3,1]] # 取多个值
Out[19]:
name
James 40
Bob 30
Name: user_age_info, dtype: int64
user_age[::2] # 切片
Out[20]:
name
Tom 18
Mary 25
Name: user_age_info, dtype: int64
三、基本属性

user_age.shape
Out[21]: (4,)
user_age.index
Out[22]: Index(['Tom', 'Bob', 'Mary', 'James'], dtype='object', name='name')
user_age.values
Out[23]: array([18, 30, 25, 40], dtype=int64)
user_age.unique()
Out[24]: array([18, 30, 25, 40], dtype=int64)
user_age.nunique()
Out[25]: 4
user_age.dropna()
Out[26]:
name
Tom 18
Bob 30
Mary 25
James 40
Name: user_age_info, dtype: int64
user_age.isin(list(range(30)))
Out[28]:
name
Tom True
Bob False
Mary True
James False
Name: user_age_info, dtype: bool
user_age.sort_index()
Out[29]:
name
Bob 30
James 40
Mary 25
Tom 18
Name: user_age_info, dtype: int64
user_age.sort_values()
Out[30]:
name
Tom 18
Mary 25
Bob 30
James 40
Name: user_age_info, dtype: int64
user_age.sort_values(ascending=False)
Out[31]:
name
James 40
Bob 30
Mary 25
Tom 18
Name: user_age_info, dtype: int64
- 数字类型

- 字符串类型

四、画图
Series.plot(kind='line', ax=None, figsize=None, use_index=True, title=None, grid=None, legend=False, style=None, logx=False, logy=False, loglog=False, xticks=None, yticks=None, xlim=None, ylim=None, rot=None, fontsize=None, colormap=None, table=False, yerr=None, xerr=None, label=None, secondary_y=False, **kwds)[source]

官方文档:http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.plot.html
- series转为dataframe
series.to_frame()
Pandas系列(一)-Series详解的更多相关文章
- nginx高性能WEB服务器系列之四配置文件详解
nginx系列友情链接:nginx高性能WEB服务器系列之一简介及安装https://www.cnblogs.com/maxtgood/p/9597596.htmlnginx高性能WEB服务器系列之二 ...
- mongo 3.4分片集群系列之六:详解配置数据库
这个系列大致想跟大家分享以下篇章: 1.mongo 3.4分片集群系列之一:浅谈分片集群 2.mongo 3.4分片集群系列之二:搭建分片集群--哈希分片 3.mongo 3.4分片集群系列之三:搭建 ...
- mongo 3.4分片集群系列之五:详解平衡器
这个系列大致想跟大家分享以下篇章: 1.mongo 3.4分片集群系列之一:浅谈分片集群 2.mongo 3.4分片集群系列之二:搭建分片集群--哈希分片 3.mongo 3.4分片集群系列之三:搭建 ...
- Hexo系列(二) 配置文件详解
Hexo 是一款优秀的博客框架,在使用 Hexo 搭建一个属于自己的博客网站后,我们还需要对其进行配置,使得 Hexo 更能满足自己的需求 这里所说的配置文件,是位于站点根目录下的 _config.y ...
- css3系列之transform详解translate
translate translate这个参数的,是transform 身上的,那么它有什么用呢? 其实他的作用很简单,就是平移,参考自己的位置来平移 translate() translateX() ...
- ThreeJS系列1_CinematicCameraJS插件详解
ThreeJS系列1_CinematicCameraJS插件详解 接着上篇 ThreeJS系列1_CinematicCameraJS插件介绍 看属性的来龙去脉 看方法作用 通过调整属性查看效果 总结 ...
- [js高手之路] html5 canvas系列教程 - 状态详解(save与restore)
本文内容与路径([js高手之路] html5 canvas系列教程 - 开始路径beginPath与关闭路径closePath详解)是canvas中比较重要的概念.掌握理解他们是做出复杂canvas动 ...
- Tomcat原理系列之六:详解socket如何封装成request(上)
目录 参与者 总结 @(详解socket如何封装成request) 看源码虽然不能马上提升你的编码水平.但能让你更好的理解编程. 因为我们tomcat多是以NIO形式处理请求,所以本系列讲的都是NIO ...
- 直通BAT必考题系列:深入详解JVM内存模型与JVM参数详细配置
VM基本是BAT面试必考的内容,今天我们先从JVM内存模型开启详解整个JVM系列,希望看完整个系列后,可以轻松通过BAT关于JVM的考核. BAT必考JVM系列专题 1.JVM内存模型 2.JVM垃圾 ...
- 深入浅出Mybatis系列四-配置详解之typeAliases别名(mybatis源码篇)
注:本文转载自南轲梦 注:博主 Chloneda:个人博客 | 博客园 | Github | Gitee | 知乎 上篇文章<深入浅出Mybatis系列(三)---配置详解之properties ...
随机推荐
- 【原】Java学习笔记002 - JAVA SE编码规范
/* * 编码规范: * 1.所有的命名遵循"见名知意"的原则 * 2.所有的命名不允许使用汉字或拼音 * 3.Java的工程命名建议使用小写,比如:oa.crm.cms... * ...
- java源码equals和hashCode
equals public boolean equals(Object anObject) { if (this == anObject) { return true; } if (anObject ...
- (生活)Photoshop入门(不定时更新)
我可能是想找个工作以外的事情做一下. 目标:我要自学网PhotoShop商业修图. 笔记: .图层 .1总结: 1.1.1图层就好像画画的一张纸,但是每一层又互不影响. 1.1.2图层蒙版(覆盖一层玻 ...
- React.js开发的基本配置(配了两天)
记录下心酸的过程: 1.安装npm 安装node.js,这时候你就可以使用npm了. 因为官方的源下载npm的包比较慢,所以可以用淘宝的源,这时候使用nrm来进行npm源的切换 在cmd中执行 npm ...
- django 视图模式
一 视图 FBV --- function based view(基于函数视图) CBV --- class based view(基于类的视图函数) 二 请求方式 get post put/patc ...
- apt-get 详解&&配置阿里源
配置apt-get的下载源 1.复制原文件备份 sudo cp /etc/apt/sources.list /etc/apt/sources.list.bak 2.编辑源列表文件 sudo vim / ...
- SpringBoot实战(八)之RabbitMQ
什么是RabbitMQ? RabbitMQ 是一个消息代理.它的核心原理非常简单:接收和发送消息.你可以把它想像成一个邮局:你把信件放入邮箱,邮递员就会把信件投递到你的收件人处.在这个比喻中,Rabb ...
- AI deeplab
参考链接: https://arxiv.org/pdf/1412.7062v3.pdf
- Svn 安装、配置、使用指南
Svn 安装.配置.使用指南 Svn 是 Subversion 的简称,是一个开放源代码的版本控制系统,它采用了分支管理系统. 1. 安装配置 1.1. 安装 svn 1.2. 创建 svn 仓库 1 ...
- 利用numpy+matplotlib绘图的基本操作教程
简述 Matplotlib是一个基于python的2D画图库,能够用python脚本方便的画出折线图,直方图,功率谱图,散点图等常用图表,而且语法简单.具体介绍见matplot官网. Numpy(Nu ...