Pandas系列(一)-Series详解
一、初始Series
Series 是一个带有 名称 和索引的一维数组,既然是数组,肯定要说到的就是数组中的元素类型,在 Series 中包含的数据类型可以是整数、浮点、字符串、Python对象等。
pandas.Series(data=None, index=None, dtype=None, name=None, copy=False, fastpath=False)
创建第一个Series
import pandas as pd
user_age = pd.Series(data=[18, 30, 25, 40])
user_age.index = ["Tom", "Bob", "Mary", "James"] #加索引
user_age.index.name = "name" #索引加名字
user_age.name="user_age_info" #series加名字
user_age
Out[4]:
name
Tom 18
Bob 30
Mary 25
James 40
Name: user_age_info, dtype: int64
- 创建Series的方式
- 列表方式创建
pd.Series([],index=[])
- 字典方式创建
pd.Series({}
# 方式一
t = pd.Series([1,2,3,4,43],index=list('asdfg'))
print(t)
a 1
s 2
d 3
f 4
g 43
dtype: int64 #方式二
temp_dict = {'name':'xiaohong','age':30,'tel':10086}
t2 = pd.Series(temp_dict)
t2
Out[10]:
name xiaohong
age 30
tel 10086
dtype: object import string
#字典推导式
a = {string.ascii_uppercase[i]:i for i in range(10)}
print(a)
print(pd.Series(a))
print(pd.Series(a,index=list(string.ascii_uppercase[5:15])))
{'A': 0, 'B': 1, 'C': 2, 'D': 3, 'E': 4, 'F': 5, 'G': 6, 'H': 7, 'I': 8, 'J': 9}
A 0
B 1
C 2
D 3
E 4
F 5
G 6
H 7
I 8
J 9
dtype: int64
F 5.0
G 6.0
H 7.0
I 8.0
J 9.0
K NaN
L NaN
M NaN
N NaN
O NaN
dtype: float64
创建series实例
- 手动指定数据类型
#手动指定类型
name = ["Tom", "Bob", "Mary", "James"]
user_age = pd.Series(data=[18, 30, 25, 40], index=name, name="user_age_info", dtype=float)
user_age
Out[7]:
Tom 18.0
Bob 30.0
Mary 25.0
James 40.0
Name: user_age_info, dtype: float64
二、Series的索引
- series索引有五种方式:索引、序号、逻辑值查找、切片,数组
name = pd.Index(["Tom", "Bob", "Mary", "James"], name="name")
user_age = pd.Series(data=[18, 30, 25, 40], index=name, name="user_age_info")
"""按索引、序号,逻辑值查找,切片"""
user_age['Tom'] # 索引
Out[14]: 18
user_age.get('Tom') # get方式
Out[15]: 18
user_age[0] # 序号
Out[16]: 18
user_age[:3] # 切片
Out[17]:
name
Tom 18
Bob 30
Mary 25
Name: user_age_info, dtype: int64
user_age[user_age>25] # 逻辑值查找
Out[18]:
name
Bob 30
James 40
Name: user_age_info, dtype: int64
user_age[[3,1]] # 取多个值
Out[19]:
name
James 40
Bob 30
Name: user_age_info, dtype: int64
user_age[::2] # 切片
Out[20]:
name
Tom 18
Mary 25
Name: user_age_info, dtype: int64
三、基本属性

user_age.shape
Out[21]: (4,)
user_age.index
Out[22]: Index(['Tom', 'Bob', 'Mary', 'James'], dtype='object', name='name')
user_age.values
Out[23]: array([18, 30, 25, 40], dtype=int64)
user_age.unique()
Out[24]: array([18, 30, 25, 40], dtype=int64)
user_age.nunique()
Out[25]: 4
user_age.dropna()
Out[26]:
name
Tom 18
Bob 30
Mary 25
James 40
Name: user_age_info, dtype: int64
user_age.isin(list(range(30)))
Out[28]:
name
Tom True
Bob False
Mary True
James False
Name: user_age_info, dtype: bool
user_age.sort_index()
Out[29]:
name
Bob 30
James 40
Mary 25
Tom 18
Name: user_age_info, dtype: int64
user_age.sort_values()
Out[30]:
name
Tom 18
Mary 25
Bob 30
James 40
Name: user_age_info, dtype: int64
user_age.sort_values(ascending=False)
Out[31]:
name
James 40
Bob 30
Mary 25
Tom 18
Name: user_age_info, dtype: int64
- 数字类型

- 字符串类型

四、画图
Series.plot(kind='line', ax=None, figsize=None, use_index=True, title=None, grid=None, legend=False, style=None, logx=False, logy=False, loglog=False, xticks=None, yticks=None, xlim=None, ylim=None, rot=None, fontsize=None, colormap=None, table=False, yerr=None, xerr=None, label=None, secondary_y=False, **kwds)[source]

官方文档:http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.plot.html
- series转为dataframe
series.to_frame()
Pandas系列(一)-Series详解的更多相关文章
- nginx高性能WEB服务器系列之四配置文件详解
nginx系列友情链接:nginx高性能WEB服务器系列之一简介及安装https://www.cnblogs.com/maxtgood/p/9597596.htmlnginx高性能WEB服务器系列之二 ...
- mongo 3.4分片集群系列之六:详解配置数据库
这个系列大致想跟大家分享以下篇章: 1.mongo 3.4分片集群系列之一:浅谈分片集群 2.mongo 3.4分片集群系列之二:搭建分片集群--哈希分片 3.mongo 3.4分片集群系列之三:搭建 ...
- mongo 3.4分片集群系列之五:详解平衡器
这个系列大致想跟大家分享以下篇章: 1.mongo 3.4分片集群系列之一:浅谈分片集群 2.mongo 3.4分片集群系列之二:搭建分片集群--哈希分片 3.mongo 3.4分片集群系列之三:搭建 ...
- Hexo系列(二) 配置文件详解
Hexo 是一款优秀的博客框架,在使用 Hexo 搭建一个属于自己的博客网站后,我们还需要对其进行配置,使得 Hexo 更能满足自己的需求 这里所说的配置文件,是位于站点根目录下的 _config.y ...
- css3系列之transform详解translate
translate translate这个参数的,是transform 身上的,那么它有什么用呢? 其实他的作用很简单,就是平移,参考自己的位置来平移 translate() translateX() ...
- ThreeJS系列1_CinematicCameraJS插件详解
ThreeJS系列1_CinematicCameraJS插件详解 接着上篇 ThreeJS系列1_CinematicCameraJS插件介绍 看属性的来龙去脉 看方法作用 通过调整属性查看效果 总结 ...
- [js高手之路] html5 canvas系列教程 - 状态详解(save与restore)
本文内容与路径([js高手之路] html5 canvas系列教程 - 开始路径beginPath与关闭路径closePath详解)是canvas中比较重要的概念.掌握理解他们是做出复杂canvas动 ...
- Tomcat原理系列之六:详解socket如何封装成request(上)
目录 参与者 总结 @(详解socket如何封装成request) 看源码虽然不能马上提升你的编码水平.但能让你更好的理解编程. 因为我们tomcat多是以NIO形式处理请求,所以本系列讲的都是NIO ...
- 直通BAT必考题系列:深入详解JVM内存模型与JVM参数详细配置
VM基本是BAT面试必考的内容,今天我们先从JVM内存模型开启详解整个JVM系列,希望看完整个系列后,可以轻松通过BAT关于JVM的考核. BAT必考JVM系列专题 1.JVM内存模型 2.JVM垃圾 ...
- 深入浅出Mybatis系列四-配置详解之typeAliases别名(mybatis源码篇)
注:本文转载自南轲梦 注:博主 Chloneda:个人博客 | 博客园 | Github | Gitee | 知乎 上篇文章<深入浅出Mybatis系列(三)---配置详解之properties ...
随机推荐
- Powershell-获取命令和帮助
Get-Help 获取命令的帮助文档 Update -Help 更新帮助文档 Save-Help 保存文档 Get-Help Get-VM 加上-Full参数获取详细说明 [-name] <st ...
- Django 数据流程图
根据学习Django并且通过几个作业,发现Django制作网站的数据流程有些比较难懂,所以制作一个数据流程图,帮助自己理解,也希望对正学习的人有所帮助! 别的不多说,上美图:
- CentOS7中利用Xshell6向虚拟机本地上传文件
环境交代 Linux系统:CentOS7, Xshell版本:6 操作步骤 下面我们以一个文件上传来演示用法 第一步 建立连接,这里不多说 在Xshell中点击如下图标,或者直接按 Alt+Ctrl+ ...
- jenkins乱码解决问题
1.jenkins控制台线上乱码解决 系统管理——系统设置,添加编码环境变量 zh.CH.UTF-8 2.java启动后,tomcat日志显示乱码,原因是环境变量没有带过去,因此shell脚本头部需要 ...
- loc iloc函数的区别
import pandas as pd data1 = pd.read_excel(r"G:\Python\example1.xlsx") loc 用行列标签,iloc用数字索引. ...
- 洛谷 P1226 【模板】快速幂||取余运算
题目链接 https://www.luogu.org/problemnew/show/P1226 题目描述 输入b,p,k的值,求b^p mod k的值.其中b,p,k*k为长整型数. 输入输出格式 ...
- 使用Flame Graph进行系统性能分析
关键词:Flame Graph.perf.perl. FlameGraph是由BrendanGregg开发的一款开源可视化性能分析工具,形象的成为火焰图. 从底向上像火苗一样逐渐变小,也反映了相互之间 ...
- sigsuspend()阻塞:异步信号SIGIO为什么会被截胡?
关键词:fcntl.fasync.signal.sigsuspend.pthread_sigmask.trace events. 此文主要是解决问题过程中的记录,内容有较多冗余.但也反映解决问题中用到 ...
- Entity Framework Core系列之实战(ASP.NET Core MVC应用程序)
本示例演示在ASP.NET 应用程序中使用EF CORE创建数据库并对其做基本的增删改查操作.当然我们默认你的机器上已经安装了.NET CORE SDK以及合适的IDE.本例使用的是Visual St ...
- Day6 Numerical simulation of optical wave propagation之通过随机介质(如大气湍流)的传播(二)
2.蒙特卡洛相位屏 大气折射率变化是一个随机的过程,通过大气的光程长度也同样是随机的.因此,湍流模型仅给出统计平均值,如折射率变量的结构函数和功率谱. 建立大气相位屏的问题就是产生随机过程独立表达式的 ...