传送门

可以发现,最短路一定要经过墙壁的断点。

那么把房间看作一个有向图,墙壁的断点为节点,求从起点到终点的最短路。

这道题的难点在于建图。枚举所有的断点,若可以走则加入这条边。

判断两点是否连通,即为判断两点之间是否有其他墙壁阻隔。

两点的连线可以看作一个一次函数$y=kx+B$,

$k=(x2-x1)/(y2-y1),B=y1-k*x1$

得到函数解析式后,算出中间的每一个墙壁与这条直线交点的$y$坐标,

由于给出墙壁的$x$是递增的,所以只需要枚举墙壁$x1+1$~$x2-1$。

若这个$y$恰好在墙壁的缺口里,则是连通的。

边的权值即为两点之间的欧几里德距离:$sqrt( (x2-x1)^2 + (y2-y1)^2 )$

边的序号:由于一条墙壁只有四个断点,则某个断点的序号可以记作$x*4+y[i]$,$i$为第几个断点。

数据范围很小,最后用floyd求出最短路即可。

注意开double!

代码如下

#include<cstdio>
#include<iostream>
#include<cstring>
#include<cmath>
#define MogeKo qwq
using namespace std;
const int maxn = ;
const int INF = ;
int n; double e[][]; struct wall {
double x,y[];
} w[maxn]; bool check(int a,int b,int g1,int g2) {
if(b-a<)return true;
double xi = w[a].x,xii = w[b].x;
double yi = w[a].y[g1],yii = w[b].y[g2];
double k = (yii-yi)/(xii-xi);
double B = yi-k*xi;
for(int i = a+; i <= b-; i++) {
double yy = k*w[i].x+B;
if(!((yy>w[i].y[]&&yy<w[i].y[])||(yy>w[i].y[]&&yy<w[i].y[])))return false;
}
return true;
} void add(int a,int b,int g1,int g2) {
if(!check(a,b,g1,g2))return;
double xi = w[a].x,xii = w[b].x;
double yi = w[a].y[g1],yii = w[b].y[g2];
e[(a<<)+g1][(b<<)+g2] = sqrt(pow(xii-xi,)+pow(yii-yi,));
} void floyd() {
for(int k = ; k <= (n<<)+; k++)
for(int i = ; i <= (n<<)+; i++)
for(int j = ; j <= (n<<)+; j++)
e[i][j] = min(e[i][j],e[i][k]+e[k][j]);
} int main() {
scanf("%d",&n);
for(int i = ; i <= n; i++) {
scanf("%lf",&w[i].x);
for(int j = ; j <= ; j++)
scanf("%lf",&w[i].y[j]);
}
w[].x = ,w[++n].x = ;
for(int i = ; i <= ; i++)
w[].y[i] = w[n].y[i] = ;
for(int i = ; i <= (n<<)+; i++)
for(int j = ; j <= (n<<)+; j++)
e[i][j] = INF;
for(int i = ; i <= n; i++)
for(int j = i+; j <= n; j++)
for(int k = ; k <= ; k++)
for(int l = ; l <= ; l++)
add(i,j,k,l);
floyd();
printf("%.2lf",e[][(n<<)+]);
return ;
}

P1354 房间最短路问题的更多相关文章

  1. [Luogu P1354]房间最短路问题

    这是一道紫题,然而实际上我觉得也就蓝题难度甚至不到. and,这道题就是一道数学题,代码模拟计算过程. 求最短路嘛,肯定要考虑建图,只需要把中间的墙上每个口的边缘处的点作为图中的点就行.至于为什么,显 ...

  2. luogu P1354 房间最短路问题 计算几何_Floyd_线段交

    第一次写计算几何,还是很开心的吧(虽然题目好水qaq) 暴力枚举端点,暴力连边即可 用线段交判一下是否可行. Code: #include <cstdio> #include <al ...

  3. 【u026】房间最短路问题

    描述 在一个长宽均为10,入口出口分别为(0,5).(10,5)的房间里,有几堵墙,每堵墙上有两个缺口,求入口到出口的最短路经. 格式 输入格式 第一排为n(n<=20),墙的数目. 接下来n排 ...

  4. luogu 1354 房间最短路问题 线段与直线相交 最短路

    题目链接 题目描述 在一个长宽均为10,入口出口分别为(0,5).(10,5)的房间里,有几堵墙,每堵墙上有两个缺口,求入口到出口的最短路经. 输入输出格式 输入格式: 第一排为n(n<=20) ...

  5. luoguP1354房间最短路问题

    判断两点间连通性,建图跑floyed #include<bits/stdc++.h> using namespace std; ; struct node { ],x; }q[N];dou ...

  6. ACM/ICPC 之 DP解有规律的最短路问题(POJ3377)

    //POJ3377 //DP解法-解有规律的最短路问题 //Time:1157Ms Memory:12440K #include<iostream> #include<cstring ...

  7. ACM 房间安排

    房间安排 时间限制:3000 ms  |  内存限制:65535 KB 难度:2   描述 2010年上海世界博览会(Expo2010),是第41届世界博览会.于2010年5月1日至10月31日期间, ...

  8. 房间安排-nyoj168

    描述 2010年上海世界博览会(Expo2010),是第41届世界博览会.于2010年5月1日至10月31日期间,在中国上海市举行.本次世博会也是由中国举办的首届世界博览会.上海世博会以“城市,让生活 ...

  9. 房间声学原理与Schroeder混响算法实现

    一.混响时间的计算与预测 所谓混响就是声音的直达声与反射声很紧凑的重合在一起时人耳所听到的声音,这个效果在语音的后期处理时特别有用.能产生混响最常见的场景就是房间内,尤其是空旷的房间中. 混响有直达声 ...

随机推荐

  1. 补习系列-springboot-使用assembly进行项目打包

    目录 springboot-maven插件 1. 项目打包Jar 2. 项目完整构建 3. 本地包依赖 参考文档 springboot-maven插件 springboot-maven插件 repac ...

  2. kernel pwn 入门环境搭建

    刚开始上手kernel pwn,光环境就搭了好几天,应该是我太菜了.. 好下面进入正题,环境总共就由两部分构成,qemu和gdb.这两个最好都需要使用源码安装. 我使用的安装环境为 qemu:安装前要 ...

  3. 流式大数据计算实践(5)----HBase使用&SpringBoot集成

    一.前言 1.上文中我们搭建好了一套HBase集群环境,这一文我们学习一下HBase的基本操作和客户端API的使用 二.shell操作 先通过命令进入HBase的命令行操作 /work/soft/hb ...

  4. 解读经典《C#高级编程》第七版 Page94-100.继承.Chapter4

    前言 今天,我们开始进入第四章的解读.本章讲的是继承.要做稍微复杂一些的开发,便不可避免的会使用到继承.本篇文章我们主要解读"实现继承". 另外,从本文开始,我开始使用Markdo ...

  5. MySQL ProxySQL相关维护说明

    背景: 前面的2篇文章MySQL ProxySQL读写分离使用初探和MySQL ProxySQL读写分离实践大致介绍了ProxySQL的使用说明,从文章的测试的例子中看到ProxySQL使用SQLIT ...

  6. javascript基础修炼(7)——Promise,异步,可靠性

    开发者的javascript造诣取决于对[动态]和[异步]这两个词的理解水平. 一. 别人是开发者,你也是 Promise技术是[javascript异步编程]这个话题中非常重要的,它一度让我感到熟悉 ...

  7. Asp.NetCore程序发布到CentOs(含安装部署netcore)--最佳实践(二)

    Asp.NetCore程序发布到CentOs(含安装部署netcore)--最佳实践(一) 接上一篇 3. Nginx配置反向代理 3.1 cnetos 安装nginx 首先,我们需要在服务器上安装N ...

  8. 查看Windows电脑上.NET Framework版本的方法(找了好久的方法)

    照网上大多数人的方法,在路径 C:\Windows\Microsoft.NET\Framework 下可以查看到.NET Framework的版本,不过无论Win7还是Win10,显示都是这样的: 那 ...

  9. idea打jar包并部署java web项目

    1.idea打jar包 (idea提供界面是jar包方式) 点击package,结束就OK,jar包一般放在target里面 部署项目 1.停止之前的服务: 查到到java的所有进程:ps -ef|g ...

  10. Android Studio撤销与SVN的关联

    为何会记录这一个问题,主要是在做项目的过程中出现了一个奇怪的现象,就是直接在文件目录下使用svn上传文件的话,可以看到该目录是与SVN相关联的,可是到了用Android Studio上传代码的时候却发 ...