[ACM] POJ 3740 Easy Finding (DLX模板题)
| Time Limit: 1000MS | Memory Limit: 65536K | |
| Total Submissions: 16178 | Accepted: 4343 |
Description
1.
Input
M, N (M ≤ 16, N ≤ 300). The next M lines every line contains
N integers separated by space.
Output
Sample Input
3 3
0 1 0
0 0 1
1 0 0
4 4
0 0 0 1
1 0 0 0
1 1 0 1
0 1 0 0
Sample Output
Yes, I found it
It is impossible
Source
解题思路:
题意为由01组成的矩阵,问能不能挑出几行使组成的新矩阵每列仅仅有一个1.
套用Dlx模板,只是G++ 超时。C++勉强能过。
代码:
#include <iostream>
#include <stdio.h>
using namespace std;
const int maxnode=5000;
const int maxm=310;
const int maxn=18; struct DLX
{
int n,m,size;
int U[maxnode],D[maxnode],R[maxnode],L[maxnode],Row[maxnode],Col[maxnode];
int H[maxn];//行头节点
int S[maxm];//每列有多少个节点
int ansd,ans[maxn];//假设有答案,则选了ansd行。详细是哪几行放在ans[ ]数组里面。ans[0~ansd-1]; void init(int _n,int _m)
{
n=_n,m=_m;
for(int i=0;i<=m;i++)
{
S[i]=0;
U[i]=D[i]=i;//初始状态下,上下自己指向自己
L[i]=i-1;
R[i]=i+1;
}
R[m]=0,L[0]=m;
size=m;//编号,每列都有一个头节点,编号1-m
for(int i=1;i<=n;i++)
H[i]=-1;//每一行的头节点
} void link(int r,int c)//第r行,第c列
{
++S[Col[++size]=c];//第size个节点所在的列为c,当前列的节点数++
Row[size]=r;//第size个节点行位置为r
D[size]=D[c];//以下这四句头插法(图是倒着的?)
U[D[c]]=size;
U[size]=c;
D[c]=size;
if(H[r]<0)
H[r]=L[size]=R[size]=size;
else
{
R[size]=R[H[r]];
L[R[H[r]]]=size;
L[size]=H[r];
R[H[r]]=size;
}
} void remove(int c)//删除节点c,以及c上下节点所在的行,每次调用这个函数。都是从列头节点開始向下删除。这里c也能够理解为第c列
{ //由于第c列的列头节点编号为c
L[R[c]]=L[c];
R[L[c]]=R[c];
for(int i=D[c];i!=c;i=D[i])
for(int j=R[i];j!=i;j=R[j])
{
U[D[j]]=U[j];
D[U[j]]=D[j];
--S[Col[j]];
}
} void resume(int c)//恢复节点c,以及c上下节点所在的行(同上,也能够理解为从第c列的头节点開始恢复
{
for(int i=U[c];i!=c;i=U[i])
for(int j=L[i];j!=i;j=L[j])
++S[Col[U[D[j]]=D[U[j]]=j]]; //打这一行太纠结了 T T
L[R[c]]=R[L[c]]=c;
} bool dance(int d)//递归深度
{
if(R[0]==0)
{
ansd=d;
return true;
}
int c=R[0];
for(int i=R[0];i!=0;i=R[i])
if(S[i]<S[c])
c=i;
remove(c);//找到节点数最少的列,当前元素不是原图上0。1的节点,而是列头节点
for(int i=D[c];i!=c;i=D[i])
{
ans[d]=Row[i];//列头节点以下的一个节点
for(int j=R[i];j!=i;j=R[j])
remove(Col[j]);
if(dance(d+1))//找到,返回
return true;
for(int j=L[i];j!=i;j=L[j])
resume(Col[j]);
}
resume(c);
return false;
}
}; DLX x;
int n,m; int main()
{
while(scanf("%d%d",&n,&m)!=EOF)
{
x.init(n,m);
int num;
for(int i=1;i<=n;i++)
{
for(int j=1;j<=m;j++)
{
cin>>num;
if(num)
x.link(i,j);
}
}
if(!x.dance(0))
printf("It is impossible\n");
else
printf("Yes, I found it\n");
}
return 0;
}
[ACM] POJ 3740 Easy Finding (DLX模板题)的更多相关文章
- [ACM] POJ 3740 Easy Finding (DFS)
Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 16202 Accepted: 4349 Description Give ...
- poj 3740 Easy Finding 二进制压缩枚举dfs 与 DLX模板详细解析
题目链接:http://poj.org/problem?id=3740 题意: 是否从0,1矩阵中选出若干行,使得新的矩阵每一列有且仅有一个1? 原矩阵N*M $ 1<= N <= 16 ...
- poj 3740 Easy Finding(Dancing Links)
Easy Finding Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 15668 Accepted: 4163 Des ...
- poj 3740 Easy Finding 精确匹配
题目链接 dlx的第一题, 真是坎坷..... #include <iostream> #include <vector> #include <cstdio> #i ...
- POJ 3740 Easy Finding
#include<cstdio> #include<cstring> #include<cmath> #include<algorithm> using ...
- POJ 3068 运送危险化学品 最小费用流 模板题
"Shortest" pair of paths Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 1215 ...
- POJ 1287 Networking【kruskal模板题】
传送门:http://poj.org/problem?id=1287 题意:给出n个点 m条边 ,求最小生成树的权 思路:最小生树的模板题,直接跑一遍kruskal即可 代码: #include< ...
- POJ 1502 MPI Maelstrom(模板题——Floyd算法)
题目: BIT has recently taken delivery of their new supercomputer, a 32 processor Apollo Odyssey distri ...
- POJ 1470 Closest Common Ancestors (模板题)(Tarjan离线)【LCA】
<题目链接> 题目大意:给你一棵树,然后进行q次询问,然后要你统计这q次询问中指定的两个节点最近公共祖先出现的次数. 解题分析:LCA模板题,下面用的是离线Tarjan来解决.并且为了代码 ...
随机推荐
- js封装的一行半显示省略号。(字数自由控制)
$(function() { //控制一行半隐藏 (function ($) { $.fn.displayPart = function (opts) { $(this).each(function ...
- [转载] K3漏油器全紫铜替换原硅胶垫教程。标准姿势
首先感谢坛友的支持,全铜套件已经完成了.有的坛友希望有个教程.在这里大体说一下技巧吧.下面步入正题. 声明:本教程图片大部分均来源于给坛友改装时所拍.如有雷同,概不负责!!!声明:本教程图片大部分均来 ...
- StreamingContext、DStream、Receiver深度剖析
本课分成四部分讲解,第一部分对StreamingContext功能及源码剖析:第二部分对DStream功能及源码剖析:第三部分对Receiver功能及源码剖析:最后一部分将StreamingConte ...
- 2017.5.1 java动态代理总结
参考来自:http://www.cnblogs.com/jqyp/archive/2010/08/20/1805041.html 1.代理模式 代理类和委托类有相同接口. 代理类负责为委托类:预处理消 ...
- Linux中MySQL数据库max_allowed_packet的调整
在MySQL数据库里某表有一个blob字段,当上传文件超过1M的时候出现下面的错误: PreparedStatementCallback; SQL [insert into uos.docfile(r ...
- jdk/java版本与Android源码编译中的错误
错误一:javap未指向有效的java版本 Traceback (most recent call last): File "../../base/android/jni_generator ...
- Highcharts使用二维数组生成图表
Highcharts使用二维数组生成图表 二维数组是更为灵活的一种数据存储方式.在Highcharts中.能够使用配置项column和rows二维数组.对于使用columns构建的二维数组,Highc ...
- iOS8.0 使用Photos.framework对相册的常用操作
转载自:http://blog.csdn.net/longitachi/article/details/50130957 1.判断相册访问权限 首先我们访问相册,肯定有需要判断是否有访问权限的时候,然 ...
- 安全狗两个中危提权+NET提权
1.循环加组复现 for /l %%i in (1,1,1000) do @net user admin admin /add&@ net localgroup administrators ...
- react-native + teaset 实现 Tabbar
1.代码 src/pages/MainPage/index.js /** * 主页面 */ import React, {Component} from 'react'; import { BackH ...