飞!

题解

首先,求逆序数对的思路:
1.得到整个数列后,从前往后扫,统计比a[i]小的,在a[i]后面的有多少个
这样做的话,应该是只有n2的暴力作法,没想到更好的方法
2.统计a[i]前面的,且比它大的数
这样做的话,就可以利用输入的时效性,每输入一个数,就把这个数的num[i]值加1,
然后统计比这个数大的数的num和,
因为这里的和一定是在这个数列中比a[i]大,且在它前面出现的数之和,
然后把把这个和加到总逆序数sum里。
这样做的话直接的暴力作法依然是n2,但是,
我们可以在,统计比这个数大的数的num和这一步进行优化,利用线段树求区间域值的复杂度是logn,
所以总体复杂度就降到了nlogn。
 
再来看这道题,求得初始数列的逆序数后,再求其他排列的逆序数有一个规律,就是
sum = sum + (n - 1 - a[i]) - a[i];
这个自行验证吧,相信很容易得出
 
最后,拓展一下,如果要求正序数怎么办?很简单,无非是大小调一下
再问,如果要求满足i<j<k,且a[i]>a[j]>a[k]的数对总数怎么办?
 
可以从中间的这个数入手,统计a[i]>a[j]的对数m,以及a[j]>a[k]的对数n,m*n就是。。。
要求a[i]>a[j]的个数还是一样的,那么a[j]>a[k]的个数呢?
两种思路:
1.得到a[i]>a[j]的对数后,将数列倒过来后再求a[j]<a[k]的对数
2.更简单的做法是,找到规律发现,n = 整个数列中比a[j]小的数 — 在a[j]前面已经出现的比a[j]小的数的个数
即(假设数列是从1开始的) n = (a[j] -1) - (j - 1 - m )
 
如果不理解模拟一边就明白了。
AC代码:
#include <cstdio>

#include <algorithm>

using namespace std;

#define lson l , m , rt << 1

#define rson m + 1 , r , rt << 1 | 1

const int maxn = ;

int sum[maxn<<];

void PushUP(int rt) {

         sum[rt] = sum[rt<<] + sum[rt<<|];

}

void build(int l,int r,int rt) {

         sum[rt] = ;

         if (l == r) return ;

         int m = (l + r) >> ;

         build(lson);

         build(rson);

}

void update(int p,int l,int r,int rt) {

         if (l == r) {

                 sum[rt] ++;

                 return ;

         }

         int m = (l + r) >> ;

         if (p <= m) update(p , lson);

         else update(p , rson);

         PushUP(rt);

}

int query(int L,int R,int l,int r,int rt) {

         if (L <= l && r <= R) {

                 return sum[rt];

         }

         int m = (l + r) >> ;

         int ret = ;

         if (L <= m) ret += query(L , R , lson);

         if (R > m) ret += query(L , R , rson);

         return ret;

}

int x[maxn];

int main() {

         int n;

         while (~scanf("%d",&n)) {

                 build( , n -  , );

                 int sum = ;

                 for (int i =  ; i < n ; i ++) {

                          scanf("%d",&x[i]);

                          sum += query(x[i] , n -  ,  , n -  , );

                          update(x[i] ,  , n -  , );

                 }

                 int ret = sum;

                 for (int i =  ; i < n ; i ++) {

                          sum += n - x[i] - x[i] - ;

                          ret = min(ret , sum);

                 }

                 printf("%d\n",ret);

         }

         return ;

}

hdu Minimum Inversion Number(逆序数的小知识与线段树)的更多相关文章

  1. hdu 1394 Minimum Inversion Number(逆序数对) : 树状数组 O(nlogn)

    http://acm.hdu.edu.cn/showproblem.php?pid=1394  //hdu 题目   Problem Description The inversion number ...

  2. hdu 1394 Minimum Inversion Number 逆序数/树状数组

    Minimum Inversion Number Time Limit: 1 Sec  Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showprob ...

  3. HDU-1394 Minimum Inversion Number (逆序数,线段树或树状数组)

    The inversion number of a given number sequence a1, a2, ..., an is the number of pairs (ai, aj) that ...

  4. HDU 4911 Inversion (逆序数 归并排序)

    Inversion 题目链接: http://acm.hust.edu.cn/vjudge/contest/121349#problem/A Description bobo has a sequen ...

  5. ZYB's Premutation(有逆序数输出原序列,线段树)

    ZYB's Premutation Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Othe ...

  6. HDU 1394 Minimum Inversion Number(线段树的单点更新)

    点我看题目 题意 :给你一个数列,a1,a2,a3,a4.......an,然后可以求出逆序数,再把a1放到an后,可以得到一个新的逆序数,再把a2放到a1后边,,,,,,,依次下去,输出最小的那个逆 ...

  7. HDU 1394 Minimum Inversion Number(线段树/树状数组求逆序数)

    Minimum Inversion Number Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java ...

  8. HDU 1394 Minimum Inversion Number ( 树状数组求逆序数 )

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1394 Minimum Inversion Number                         ...

  9. HDU 1394 Minimum Inversion Number(最小逆序数/暴力 线段树 树状数组 归并排序)

    题目链接: 传送门 Minimum Inversion Number Time Limit: 1000MS     Memory Limit: 32768 K Description The inve ...

随机推荐

  1. [Python Study Notes]气泡散点图绘制

    ''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' ...

  2. AudioManager 音量『转』

    获取系统音量 通过程序获取android系统手机的铃声和音量.同样,设置铃声和音量的方法也很简单! 设置音量的方法也很简单,AudioManager提供了方法: publicvoidsetStream ...

  3. FileZilla Server下通过别名设置虚拟目录

    说明:FileZilla Server 的虚拟目录设置与其它 FTP 服务器软件有所不同.在 FileZilla Server 中设置虚拟目录,必须采用 FTP 根目录 + 虚拟目录名的形式来进行.比 ...

  4. C++——override

    override关键字作用: 如果派生类在虚函数声明时使用了override描述符,那么该函数必须重载其基类中的同名函数,否则代码将无法通过编译.举例子说明 struct Base { virtual ...

  5. ES01 数据类型、正则表达式、身份证校验

    1 基本数据类型 参见W3C的教程即可 2 正则表达式 参考博文:点击前往 3 身份证校验 参考博文:点击前往 <div class="panel panel-primary" ...

  6. multi-mechanize安装实践

    关于multi-mechanize的详细介绍参见如下链接,是其官网 http://testutils.org/multi-mechanize/setup.html multi-mechanize是一款 ...

  7. STM32 C++编程 004 Adc (数模转换)类

    使用 C++ 语言给 STM32 编写一个 Adc 类 我使用的STM32芯片:STM32F103ZET6 我们使用的STM32库版本:V3.5.0 注意: 想学习本套 STM32 C++编程 的专栏 ...

  8. 怎么把网页保存为pdf文件

    不就是用chrome浏览器打印功能,然后保存为pdf就可以了吗? 对于一些结构简单的比如,RFC文档这样操作一般没什么问题,对于一些有浮动元素的网页就不好说了,必须先用chrome的审查元素把一些不必 ...

  9. JavaPersistenceWithHibernate第二版笔记-第六章-Mapping inheritance-009Polymorphic collections(@OneToMany(mappedBy = "user")、@ManyToOne、)

    一.代码 1. package org.jpwh.model.inheritance.associations.onetomany; import org.jpwh.model.Constants; ...

  10. android listview addHeaderView和addFooterView的注意事项

    1. item内如果有button等控件时,在监听listview的onitemclick事件时,焦点会被item内的button. imagebutton等控件抢走,从而导致在listview设置了 ...