Luogu 3825 [NOI2017]游戏
Luogu的spj现在挂了,要去其他OJ提交。
2-SAT
发现如果不考虑$x$的情况,这就成为一个2-SAT的裸题了,我们有$O(n + m)$的方法可以解决它。
那加上$x$的情况怎么弄……岂不是变成一个3-SAT。
滑稽吧,3-SAT已经被证明是一个完全NPC问题了……
再观察一下数据范围发现为$x$的点最多只有$8$个,那么我们思考一下(看一下题解)就会发现$x$的点取$a$或者$b$的情况其实就可以遍历到所有可行解了,所以直接取枚举这个$2^{d}$,然后$O(n + m)$地去检验它,时间复杂度$O(2^{d}(n + m))$。
连边方法(假设当前的条件是$x, c1, y, c2$):
1、如果第$x$场不能使用$x$,那么直接$continue$,这个条件显然没有影响。
2、如果第$x$场能使用$x$,第$y$场不能使用$y$,那么直接把$(x, true)$连向$(x, false)$,代表如果选了$(x, true)$就无解。
3、如果第$x$场可以使用$x$,第$y$场也可以使用$y$,那么按照套路连成一个对偶图,把$(x, true)$向$(y, true)$连边,同时把$(y, false)$向$(x, false)$连边。
关于$(x, true)$和$(x, false)$的记法,可以自己yy一下,要把$(x, true)$记为$x$, $(x, false)$记为$x + n$, 最后输出的时候对应回来就好。
Code:
#include <cstdio>
#include <cstring>
#include <cstdlib>
using namespace std; const int N = 2e5 + ; int n, m, K, pos[], tot, head[N];
int dfsc, dfn[N], low[N], top, sta[N], scc, bel[N];
char str[N];
bool vis[N]; struct Eedge {
int to, nxt;
} e[N << ]; inline void add(int from, int to) {
e[++tot].to = to;
e[tot].nxt = head[from];
head[from] = tot;
} inline void read(int &X) {
X = ; char ch = ; int op = ;
for(; ch > '' || ch < ''; ch = getchar())
if(ch == '-') op = -;
for(; ch >= '' && ch <= ''; ch = getchar())
X = (X << ) + (X << ) + ch - ;
X *= op;
} struct Restrain {
char c1, c2;
int x, y; inline void readIn() {
c1 = c2 = ;
read(x); for(c1 = getchar(); c1 != 'A' && c1 != 'B' && c1 != 'C'; c1 = getchar());
read(y); for(c2 = getchar(); c2 != 'A' && c2 != 'B' && c2 != 'C'; c2 = getchar());
} } a[N]; inline int id(int now, char c) {
if(str[now] == 'a') return c == 'C' ? now : now + n;
if(str[now] == 'b') return c == 'A' ? now : now + n;
if(str[now] == 'c') return c == 'B' ? now : now + n;
return ;
} inline int opp(int nowId) {
return nowId > n ? nowId - n : nowId + n;
} inline int min(int x, int y) {
return x > y ? y : x;
} void tarjan(int x) {
dfn[x] = low[x] = ++dfsc;
vis[x] = , sta[++top] = x;
for(int i = head[x]; i; i = e[i].nxt) {
int y = e[i].to;
if(!dfn[y]) {
tarjan(y);
low[x] = min(low[x], low[y]);
} else if(vis[y]) low[x] = min(low[x], dfn[y]);
} if(low[x] == dfn[x]) {
++scc;
for(; sta[top + ] != x; --top) {
vis[sta[top]] = ;
bel[sta[top]] = scc;
}
}
} inline bool solve() {
dfsc = tot = top = scc = ;
memset(dfn, , sizeof(dfn));
memset(low, , sizeof(low));
memset(bel, , sizeof(bel));
memset(head, , sizeof(head)); for(int i = ; i <= m; i++) {
if(a[i].c1 + == str[a[i].x]) continue;
if(a[i].c1 == a[i].c2 && a[i].x == a[i].y) continue;
int p1 = id(a[i].x, a[i].c1), p2 = opp(p1);
int p3 = id(a[i].y, a[i].c2), p4 = opp(p3);
if(a[i].c2 + == str[a[i].y]) {
add(p1, p2);
continue;
}
add(p1, p3), add(p4, p2);
} for(int i = ; i <= * n; i++)
if(!dfn[i]) tarjan(i); for(int i = ; i <= n; i++)
if(bel[i] == bel[i + n]) return ; return ;
} inline void print() {
for(int i = ; i <= n; i++) {
if(bel[i] < bel[i + n]) {
if(str[i] == 'a') putchar('C');
if(str[i] == 'b') putchar('A');
if(str[i] == 'c') putchar('B');
} else {
if(str[i] == 'a') putchar('B');
if(str[i] == 'b') putchar('C');
if(str[i] == 'c') putchar('A');
}
}
exit();
} int main() {
read(n), read(K); scanf("%s", str + );
K = ;
for(int i = ; i <= n; i++)
if(str[i] == 'x') pos[++K] = i; /* for(int i = 1; i <= K; i++)
printf("%d ", pos[i]);
printf("\n"); */ read(m);
for(int i = ; i <= m; i++) a[i].readIn(); /* for(int i = 1; i <= m; i++)
printf("%d %c %d %c\n", a[i].x, a[i].c1, a[i].y, a[i].c2); */ for(int S = ; S < ( << K); S++) {
for(int i = ; i < K; i++)
if((S >> i) & ) str[pos[i + ]] = 'a';
else str[pos[i + ]] = 'b'; bool flag = solve();
if(flag) print();
} puts("-1");
return ;
}
Luogu 3825 [NOI2017]游戏的更多相关文章
- [Luogu P3825] [NOI2017] 游戏 (2-SAT)
[Luogu P3825] [NOI2017] 游戏 (2-SAT) 题面 题面较长,略 分析 看到这些约束,应该想到这是类似2-SAT的问题.但是x地图很麻烦,因为k-SAT问题在k>2的时候 ...
- 洛谷3825 [NOI2017]游戏 2-sat
原文链接http://www.cnblogs.com/zhouzhendong/p/8146041.html 题目传送门 - 洛谷3825 题解 我们考虑到地图中x的个数很少,最多只有8个. 所以我们 ...
- Luogu P3825 [NOI2017]游戏
这道题看上去NPC啊,超级不可做的样子. 我们先分析一下简单的情形:没有\(x\)地图 此时每个地图由于限制掉一种汽车,那么显然只会有两种选择. 再考虑到限制的情况,那么大致做法就很显然了--2-SA ...
- P3825 [NOI2017]游戏
题目 P3825 [NOI2017]游戏 做法 \(x\)地图外的地图好做,模型:\((x,y)\)必须同时选\(x \rightarrow y,y^\prime \rightarrow x^\pri ...
- 【BZOJ4945】[Noi2017]游戏 2-SAT
[BZOJ4945][Noi2017]游戏 题目描述 题解:2-SAT学艺不精啊! 这题一打眼看上去是个3-SAT?哎?3-SAT不是NPC吗?哎?这题x怎么只有8个?暴力走起! 因为x要么不是A要么 ...
- [luogu]P1070 道路游戏[DP]
[luogu]P1070 道路游戏 题目描述小新正在玩一个简单的电脑游戏.游戏中有一条环形马路,马路上有 n 个机器人工厂,两个相邻机器人工厂之间由一小段马路连接.小新以某个机器人工厂为起点,按顺时针 ...
- BZOJ4945 & 洛谷3825 & UOJ317:[NOI2017]游戏——题解
https://www.lydsy.com/JudgeOnline/problem.php?id=4945 https://www.luogu.org/problemnew/show/P3825 ht ...
- bzoj3825 NOI2017 游戏
题目背景 狂野飙车是小 L 最喜欢的游戏.与其他业余玩家不同的是,小 L 在玩游戏之余,还精于研究游戏的设计,因此他有着与众不同的游戏策略. 题目描述 小 L 计划进行nn 场游戏,每场游戏使用一张地 ...
- [NOI2017]游戏(2-SAT)
这是约半年前写的题解了,就搬过来吧 感觉这是NOI2017最水的一题(当然我还是不会2333),因为是一道裸的2-SAT.我就是看着这道题学的2-SAT 算法一:暴力枚举.对于abc二进制枚举,对于x ...
随机推荐
- shell正则
第五天 REGEXP:REGular EXPressionPattern: 正则表达式: Basic REGEXP:基本 Extended REGEXP:扩展 基本正则表达式: 字符匹配类:.: 任意 ...
- 大话设计模式--原型模式 Prototype -- C++实现
1. 原型模式: 用原型实例指定创建对象的种类,并且通过拷贝这些原型创建新的对象... 注意: 拷贝的时候是浅拷贝 还是 深拷贝, 来考虑是否需要重写拷贝构造函数. 关键在于: virtual Pro ...
- Python Panda - 学习笔记
#Group by Function df.groupby('Date')[['Date']].count() df.groupby('Date')[['Date']].sum() # if it c ...
- 使用SQL脚本创建数据库,操作主键、外键与各种约束(MS SQL Server)
在实际开发中,可能很少人会手写sql脚本来操作数据库的种种.特别是微软的MS SQL Server数据库,它的SQL Server Management Studio对数据库的图形化操作极致简便,从而 ...
- MyBaties--Mapper configuration
method one: <!-- Using classpath relative resources --> <mappers> <mapper resource=&q ...
- MySQL--开发技巧(一)
Inner Join: Left Outer Join: Right Outer Join: Full Join: Cross Join: SELECT t1.attrs ,t2.attrs FROM ...
- 谈MicroMessageTest的开始创建
一开始,创建一个可以看到的jsp前端页面. 只不过不是用纯jsp页面访问,而是用Servlet doGet跳转至jsp页面,req.getRequestDispatcher(jsp页面的全称 还是全地 ...
- Qt Quick中的信号与槽
在QML中,在Qt Quick中,要想妥善地处理各种事件,肯定离不开信号与槽,本博的主要内容就是整理Qt 中的信号与槽的内容. 1. 链接QML类型的已知信号 QML中已有类型定义的信号分为两类:一类 ...
- Bootstrap日期/日历插件Datepicker 时间加标记
由于工作需要,项目中使用了Bootstrap日期/日历插件Datepicker,根据需求需要在其中添加日期标记,实现效果图如下: 特此记录此次解决方案: 1.首先分析了功能的DOM元素(如下图),可以 ...
- JS上传图片-通过FileReader获取图片的base64
下面文章,我想要的是: FileReader这个对象,可以借助FileReader来获取上传图片的base64,就可以在客户端显示该图片了.同时,还可以把该图片的base64发送到服务端,保存起来. ...