一、Two Sum

Given an array of integers, find two numbers such that they add up to a specific target number.

The function twoSum should return indices of the two numbers such that they add up to the target, where index1 must be less than index2. Please note that your returned answers (both index1 and index2) are not zero-based.

For example:

Input: numbers={2, 7, 11, 15}, target=9
Output: index1=1, index2=2

Naive Approach

This problem is pretty straightforward. We can simply examine every possible pair of numbers in this integer array.

Time complexity in worst case: O(n^2).

  1: public static int[] twoSum(int[] numbers, int target) {
  2:   int[] ret = new int[2];
  3:   for (int i = 0; i < numbers.length; i++) {
  4:     for (int j = i + 1; j < numbers.length; j++) {
  5:       if (numbers[i] + numbers[j] == target) {
  6:         ret[0] = i + 1;
  7:         ret[1] = j + 1;
  8:       }
  9:     }
 10:   }
 11:   return ret;
 12: }
 

Better Solution

Use HashMap to store the target value.

  1: public class Solution {
  2:     public int[] twoSum(int[] numbers, int target) {
  3: 	HashMap<Integer, Integer> map = new HashMap<Integer, Integer>();
  4: 	int[] result = new int[2];
  5: 	for (int i = 0; i < numbers.length; i++) {
  6: 		if (map.containsKey(numbers[i])) {
  7: 			int index = map.get(numbers[i]);
  8: 			result[0] = index+1 ;
  9: 			result[1] = i+1;
 10: 			break;
 11: 		} else {
 12: 			map.put(target - numbers[i], i);
 13: 		}
 14: 	}
 15: 	return result;
 16:     }
 17: }

Time complexity depends on the put and get operations of HashMap which is normally O(1).

Time complexity of this solution is O(n).


二、Two Sum  II– Input array is sorted

This problem is similar to Two Sum.But the input array is sorted.
To solve this problem, we can use two points to scan the array from both sides. See
Java solution below:

  1: public int[] twoSum(int[] numbers, int target) {
  2: 	if (numbers == null || numbers.length == 0)
  3: 		return null;
  4:
  5: 	int i = 0;
  6: 	int j = numbers.length - 1;
  7:
  8: 	while (i < j) {
  9: 		int x = numbers[i] + numbers[j];
 10: 		if (x < target) {
 11: 			++i;
 12: 		} else if (x > target) {
 13: 			j--;
 14: 		} else {
 15: 			return new int[] { i + 1, j + 1 };
 16: 		}
 17: 	}
 18:
 19: 	return null;
 20: }

三、Two Sum III - Data structure design

Design and implement a TwoSum class. It should support the following operations: add and find.

add - Add the number to an internal data structure.
find - Find if there exists any pair of numbers which sum is equal to the value.

For example,

add(1);
add(3);
add(5);
find(4) -> true
find(7) –> false
 

Java Solution

Since the desired class need add and get operations, HashMap is a good option for this purpose.

  1: public class TwoSum {
  2: 	private HashMap<Integer, Integer> elements = new HashMap<Integer, Integer>();
  3:
  4: 	public void add(int number) {
  5: 		if (elements.containsKey(number)) {
  6: 			elements.put(number, elements.get(number) + 1);
  7: 		} else {
  8: 			elements.put(number, 1);
  9: 		}
 10: 	}
 11:
 12: 	public boolean find(int value) {
 13: 		for (Integer i : elements.keySet()) {
 14: 			int target = value - i;
 15: 			if (elements.containsKey(target)) {
 16: 				if (i == target && elements.get(target) < 2) {
 17: 					continue;
 18: 				}
 19: 				return true;
 20: 			}
 21: 		}
 22: 		return false;
 23: 	}
 24: }
 

四、3Sum

Problem:

Given an array S of n integers, are there elements a, b, c in S such that a + b + c = 0? Find all unique triplets in the array which gives the sum of zero.

Note:
Elements in a triplet (a,b,c) must be in non-descending order. (ie, a ≤ b ≤ c)
The solution set must not contain duplicate triplets.

    For example, given array S = {-1 0 1 2 -1 -4},

    A solution set is:
(-1, 0, 1)
(-1, -1, 2)

1. Naive Solution

Naive solution is 3 loops, and this gives time complexity O(n^3). Apparently this is not an acceptable solution, but a discussion can start from here.

  1: public class Solution {
  2:     public ArrayList<ArrayList<Integer>> threeSum(int[] num) {
  3:         //sort array
  4:         Arrays.sort(num);
  5:
  6:         ArrayList<ArrayList<Integer>> result = new ArrayList<ArrayList<Integer>>();
  7:         ArrayList<Integer> each = new ArrayList<Integer>();
  8:         for(int i=0; i<num.length; i++){
  9:             if(num[i] > 0) break;
 10:
 11:             for(int j=i+1; j<num.length; j++){
 12:                 if(num[i] + num[j] > 0 && num[j] > 0) break;
 13:
 14:                 for(int k=j+1; k<num.length; k++){
 15:                   if(num[i] + num[j] + num[k] == 0) {
 16:
 17:                       each.add(num[i]);
 18:                       each.add(num[j]);
 19:                       each.add(num[k]);
 20:                       result.add(each);
 21:                       each.clear();
 22:                   }
 23:                 }
 24:             }
 25:         }
 26:
 27:         return result;
 28:     }
 29: }

* The solution also does not handle duplicates. Therefore, it is not only time inefficient, but also incorrect.

Result:

Submission Result: Output Limit Exceeded
 

2. Better Solution

A better solution is using two pointers instead of one. This makes time complexity of O(n^2).

To avoid duplicate, we can take advantage of sorted arrays, i.e., move pointers by >1 to use same element only once.

  1: public ArrayList<ArrayList<Integer>> threeSum(int[] num) {
  2: 	ArrayList<ArrayList<Integer>> result = new ArrayList<ArrayList<Integer>>();
  3:
  4: 	if (num.length < 3)
  5: 		return result;
  6:
  7: 	// sort array
  8: 	Arrays.sort(num);
  9:
 10: 	for (int i = 0; i < num.length - 2; i++) {
 11: 		 //avoid duplicate solutions
 12: 		if (i == 0 || num[i] > num[i - 1]) {
 13:
 14: 			int negate = -num[i];
 15:
 16: 			int start = i + 1;
 17: 			int end = num.length - 1;
 18:
 19: 			while (start < end) {
 20: 				//case 1
 21: 				if (num[start] + num[end] == negate) {
 22: 					ArrayList<Integer> temp = new ArrayList<Integer>();
 23: 					temp.add(num[i]);
 24: 					temp.add(num[start]);
 25: 					temp.add(num[end]);
 26:
 27: 					result.add(temp);
 28: 					start++;
 29: 					end--;
 30: 					//avoid duplicate solutions
 31: 					while (start < end && num[end] == num[end + 1])
 32: 						end--;
 33:
 34: 					while (start < end && num[start] == num[start - 1])
 35: 						start++;
 36: 				//case 2
 37: 				} else if (num[start] + num[end] < negate) {
 38: 					start++;
 39: 				//case 3
 40: 				} else {
 41: 					end--;
 42: 				}
 43: 			}
 44:
 45: 		}
 46: 	}
 47:
 48: 	return result;
 49: }
 

五、4Sum

Given an array S of n integers, are there elements a, b, c, and d in S such that a + b + c + d = target? Find all unique quadruplets in the array which gives the sum of target.

Note:
Elements in a quadruplet (a,b,c,d) must be in non-descending order. (ie, a ≤ b ≤ c ≤ d)
The solution set must not contain duplicate quadruplets.

    For example, given array S = {1 0 -1 0 -2 2}, and target = 0.

    A solution set is:
(-1, 0, 0, 1)
(-2, -1, 1, 2)
(-2, 0, 0, 2)

Thoughts

A typical k-sum problem. Time is N to the power of (k-1).

Java Solution

  1: public ArrayList<ArrayList<Integer>> fourSum(int[] num, int target) {
  2: 	Arrays.sort(num);
  3:
  4: 	HashSet<ArrayList<Integer>> hashSet = new HashSet<ArrayList<Integer>>();
  5: 	ArrayList<ArrayList<Integer>> result = new ArrayList<ArrayList<Integer>>();
  6:
  7: 	for (int i = 0; i < num.length; i++) {
  8: 		for (int j = i + 1; j < num.length; j++) {
  9: 			int k = j + 1;
 10: 			int l = num.length - 1;
 11:
 12: 			while (k < l) {
 13: 				int sum = num[i] + num[j] + num[k] + num[l];
 14:
 15: 				if (sum > target) {
 16: 					l--;
 17: 				} else if (sum < target) {
 18: 					k++;
 19: 				} else if (sum == target) {
 20: 					ArrayList<Integer> temp = new ArrayList<Integer>();
 21: 					temp.add(num[i]);
 22: 					temp.add(num[j]);
 23: 					temp.add(num[k]);
 24: 					temp.add(num[l]);
 25:
 26: 					if (!hashSet.contains(temp)) {
 27: 						hashSet.add(temp);
 28: 						result.add(temp);
 29: 					}
 30:
 31: 					k++;
 32: 					l--;
 33: 				}
 34: 			}
 35: 		}
 36: 	}
 37:
 38: 	return result;
 39: }

Here is the hashCode method of ArrayList. It makes sure that if all elements of two lists are the same, then the hash code of the two lists will be the same. Since each element in the ArrayList is Integer, same integer has same hash code.

  1: int hashCode = 1;
  2: Iterator<E> i = list.iterator();
  3: while (i.hasNext()) {
  4:       E obj = i.next();
  5:       hashCode = 31*hashCode + (obj==null ? 0 : obj.hashCode());
  6: }

六、3Sum Closest

Given an array S of n integers, find three integers in S such that the sum is closest to a given number, target. Return the sum of the three integers. You may assume that each input would have exactly one solution.

For example, given array S = {-1 2 1 -4}, and target = 1.
The sum that is closest to the target is 2. (-1 + 2 + 1 = 2).

Analysis

This problem is similar to 2 Sum. This kind of problem can be solved by using a similar approach, i.e., two pointers from both left and right.

Java Solution

  1: public int threeSumClosest(int[] nums, int target) {
  2:     int min = Integer.MAX_VALUE;
  3: 	int result = 0;
  4: 	Arrays.sort(nums);
  5: 	for (int i = 0; i < nums.length; i++) {
  6: 		int j = i + 1;
  7: 		int k = nums.length - 1;
  8: 		while (j < k) {
  9: 			int sum = nums[i] + nums[j] + nums[k];
 10: 			int diff = Math.abs(sum - target);
 11: 			if(diff == 0) return sum;
 12: 			if (diff < min) {
 13: 				min = diff;
 14: 				result = sum;
 15: 			}
 16: 			if (sum <= target) {
 17: 				j++;
 18: 			} else {
 19: 				k--;
 20: 			}
 21: 		}
 22: 	}
 23:
 24: 	return result;
 25: }

Time Complexity is O(n^2).

[算法]K-SUM problem的更多相关文章

  1. summary of k Sum problem and solutions in leetcode

    I found summary of k Sum problem and solutions in leetcode on the Internet. http://www.sigmainfy.com ...

  2. 求和问题总结(leetcode 2Sum, 3Sum, 4Sum, K Sum)

    转自  http://tech-wonderland.net/blog/summary-of-ksum-problems.html 前言: 做过leetcode的人都知道, 里面有2sum, 3sum ...

  3. k sum 问题系列

    转自:http://tech-wonderland.net/blog/summary-of-ksum-problems.html (中文旧版)前言: 做过leetcode的人都知道, 里面有2sum, ...

  4. LeetCode解题报告--2Sum, 3Sum, 4Sum, K Sum求和问题总结

    前言: 这几天在做LeetCode 里面有2sum, 3sum(closest), 4sum等问题, 这类问题是典型的递归思路解题.该这类问题的关键在于,在进行求和求解前,要先排序Arrays.sor ...

  5. lintcode: k Sum 解题报告

    K SUM My Submissions http://www.lintcode.com/en/problem/k-sum/ 题目来自九章算法 13% Accepted Given n distinc ...

  6. HDu 1001 Sum Problem 分类: ACM 2015-06-19 23:38 12人阅读 评论(0) 收藏

    Sum Problem Time Limit: 1000/500 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total ...

  7. HD2058The sum problem

    The sum problem Time Limit: 5000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Tot ...

  8. Maxmum subsequence sum problem

    We have a lot of ways to solve the maximum subsequence sum problem, but different ways take differen ...

  9. NYOJ--927--dfs--The partial sum problem

    /* Name: NYOJ--927--The partial sum problem Author: shen_渊 Date: 15/04/17 19:41 Description: DFS,和 N ...

  10. 动态规划法(三)子集和问题(Subset sum problem)

      继续讲故事~~   上次讲到我们的主人公丁丁,用神奇的动态规划法解决了杂货店老板的两个找零钱问题,得到了老板的肯定.之后,他就决心去大城市闯荡了,看一看外面更大的世界.   这天,丁丁刚回到家,他 ...

随机推荐

  1. Hive优化策略

    hive优化目标 在有限的资源下,运行效率高. 常见问题 数据倾斜.Map数设置.Reduce数设置等 hive运行 查看运行计划 explain [extended] hql 例子 explain ...

  2. Maven环境下搭建SSH框架之Spring整合Struts2

    © 版权声明:本文为博主原创文章,转载请注明出处 1.搭建环境 Struts2:2.5.10 Spring:4.3.8.RELEASE 注意:其他版本在某些特性的使用上可能稍微存在差别 2.准备工作 ...

  3. ffmpeg截图

    ffmpeg.exe -probesize 32768 -i "rtmp://localhost/live/1 live=1" -y -t 0.001 -ss 1 -f image ...

  4. MSP430G2553电子时钟实验

    用msp430g2553控制1602液晶显示时间,并能够通过按键设置时间.我做了正计时和倒计时两种模式 /*********************************************** ...

  5. spring boot集成activemq

    spring boot集成activemq 转自:https://blog.csdn.net/maiyikai/article/details/77199300

  6. JQ多种刷新方式

    下面介绍全页面刷新方法:有时候可能会用到 window.location.reload()刷新当前页面. parent.location.reload()刷新父亲对象(用于框架) opener.loc ...

  7. C# .Net 下 x86使用大内存的处理

    /LARGEADDRESSAWARE 选项通知链接器应用程序可处理大于 2 GB 的地址. 在 64 位编译器中,默认情况下启用此选项. 在 32 位编译器中,如果未在链接器行上指定 /LARGEAD ...

  8. Shell 编程基础 --语法高速入门

    简单的说shell就是一个包括若干行Shell或者Linux命令的文件.对于一次编写,多次使用的大量命令,就能够使用单独的文件保存下来,以便日后使用.通常shell脚本以.sh为后缀.第一行一定要指明 ...

  9. XSD文件详解

    XSD (xml Schema Definition) Xml Schema的用途 1.  定义一个Xml文档中都有什么元素 2.  定义一个Xml文档中都会有什么属性 3.  定义某个节点的都有什么 ...

  10. WPF 获取控件模板中的控件

    DG是控件名称public T GetVisualChild<T>(DependencyObject parent, Func<T, bool> predicate) wher ...