[算法]K-SUM problem
一、Two Sum
Given an array of integers, find two numbers such that they add up to a specific target number.
The function twoSum should return indices of the two numbers such that they add up to the target, where index1 must be less than index2. Please note that your returned answers (both index1 and index2) are not zero-based.
For example:
Input: numbers={2, 7, 11, 15}, target=9
Output: index1=1, index2=2
Naive Approach
This problem is pretty straightforward. We can simply examine every possible pair of numbers in this integer array.
Time complexity in worst case: O(n^2).
1: public static int[] twoSum(int[] numbers, int target) {2: int[] ret = new int[2];3: for (int i = 0; i < numbers.length; i++) {4: for (int j = i + 1; j < numbers.length; j++) {5: if (numbers[i] + numbers[j] == target) {6: ret[0] = i + 1;7: ret[1] = j + 1;8: }9: }10: }11: return ret;12: }
Better Solution
Use HashMap to store the target value.
1: public class Solution {2: public int[] twoSum(int[] numbers, int target) {3: HashMap<Integer, Integer> map = new HashMap<Integer, Integer>();4: int[] result = new int[2];5: for (int i = 0; i < numbers.length; i++) {6: if (map.containsKey(numbers[i])) {7: int index = map.get(numbers[i]);8: result[0] = index+1 ;9: result[1] = i+1;10: break;11: } else {12: map.put(target - numbers[i], i);13: }14: }15: return result;16: }17: }
Time complexity depends on the put and get operations of HashMap which is normally O(1).
Time complexity of this solution is O(n).
二、Two Sum II– Input array is sorted
This problem is similar to Two Sum.But the input array is sorted.
To solve this problem, we can use two points to scan the array from both sides. See
Java solution below:
1: public int[] twoSum(int[] numbers, int target) {2: if (numbers == null || numbers.length == 0)3: return null;4:5: int i = 0;6: int j = numbers.length - 1;7:8: while (i < j) {9: int x = numbers[i] + numbers[j];10: if (x < target) {11: ++i;12: } else if (x > target) {13: j--;14: } else {15: return new int[] { i + 1, j + 1 };16: }17: }18:19: return null;20: }
三、Two Sum III - Data structure design
Design and implement a TwoSum class. It should support the following operations: add and find.
add - Add the number to an internal data structure.
find - Find if there exists any pair of numbers which sum is equal to the value.
For example,
add(1);
add(3);
add(5);
find(4) -> true
find(7) –> false
Java Solution
Since the desired class need add and get operations, HashMap is a good option for this purpose.
1: public class TwoSum {2: private HashMap<Integer, Integer> elements = new HashMap<Integer, Integer>();3:4: public void add(int number) {5: if (elements.containsKey(number)) {6: elements.put(number, elements.get(number) + 1);7: } else {8: elements.put(number, 1);9: }10: }11:12: public boolean find(int value) {13: for (Integer i : elements.keySet()) {14: int target = value - i;15: if (elements.containsKey(target)) {16: if (i == target && elements.get(target) < 2) {17: continue;18: }19: return true;20: }21: }22: return false;23: }24: }
四、3Sum
Problem:
Given an array S of n integers, are there elements a, b, c in S such that a + b + c = 0? Find all unique triplets in the array which gives the sum of zero.
Note:
Elements in a triplet (a,b,c) must be in non-descending order. (ie, a ≤ b ≤ c)
The solution set must not contain duplicate triplets.
For example, given array S = {-1 0 1 2 -1 -4}, A solution set is:
(-1, 0, 1)
(-1, -1, 2)
1. Naive Solution
Naive solution is 3 loops, and this gives time complexity O(n^3). Apparently this is not an acceptable solution, but a discussion can start from here.
1: public class Solution {2: public ArrayList<ArrayList<Integer>> threeSum(int[] num) {3: //sort array4: Arrays.sort(num);5:6: ArrayList<ArrayList<Integer>> result = new ArrayList<ArrayList<Integer>>();7: ArrayList<Integer> each = new ArrayList<Integer>();8: for(int i=0; i<num.length; i++){9: if(num[i] > 0) break;10:11: for(int j=i+1; j<num.length; j++){12: if(num[i] + num[j] > 0 && num[j] > 0) break;13:14: for(int k=j+1; k<num.length; k++){15: if(num[i] + num[j] + num[k] == 0) {16:17: each.add(num[i]);18: each.add(num[j]);19: each.add(num[k]);20: result.add(each);21: each.clear();22: }23: }24: }25: }26:27: return result;28: }29: }
* The solution also does not handle duplicates. Therefore, it is not only time inefficient, but also incorrect.
Result:
Submission Result: Output Limit Exceeded
2. Better Solution
A better solution is using two pointers instead of one. This makes time complexity of O(n^2).
To avoid duplicate, we can take advantage of sorted arrays, i.e., move pointers by >1 to use same element only once.
1: public ArrayList<ArrayList<Integer>> threeSum(int[] num) {2: ArrayList<ArrayList<Integer>> result = new ArrayList<ArrayList<Integer>>();3:4: if (num.length < 3)5: return result;6:7: // sort array8: Arrays.sort(num);9:10: for (int i = 0; i < num.length - 2; i++) {11: //avoid duplicate solutions12: if (i == 0 || num[i] > num[i - 1]) {13:14: int negate = -num[i];15:16: int start = i + 1;17: int end = num.length - 1;18:19: while (start < end) {20: //case 121: if (num[start] + num[end] == negate) {22: ArrayList<Integer> temp = new ArrayList<Integer>();23: temp.add(num[i]);24: temp.add(num[start]);25: temp.add(num[end]);26:27: result.add(temp);28: start++;29: end--;30: //avoid duplicate solutions31: while (start < end && num[end] == num[end + 1])32: end--;33:34: while (start < end && num[start] == num[start - 1])35: start++;36: //case 237: } else if (num[start] + num[end] < negate) {38: start++;39: //case 340: } else {41: end--;42: }43: }44:45: }46: }47:48: return result;49: }
五、4Sum
Given an array S of n integers, are there elements a, b, c, and d in S such that a + b + c + d = target? Find all unique quadruplets in the array which gives the sum of target.
Note:
Elements in a quadruplet (a,b,c,d) must be in non-descending order. (ie, a ≤ b ≤ c ≤ d)
The solution set must not contain duplicate quadruplets.
For example, given array S = {1 0 -1 0 -2 2}, and target = 0. A solution set is:
(-1, 0, 0, 1)
(-2, -1, 1, 2)
(-2, 0, 0, 2)
Thoughts
A typical k-sum problem. Time is N to the power of (k-1).
Java Solution
1: public ArrayList<ArrayList<Integer>> fourSum(int[] num, int target) {2: Arrays.sort(num);3:4: HashSet<ArrayList<Integer>> hashSet = new HashSet<ArrayList<Integer>>();5: ArrayList<ArrayList<Integer>> result = new ArrayList<ArrayList<Integer>>();6:7: for (int i = 0; i < num.length; i++) {8: for (int j = i + 1; j < num.length; j++) {9: int k = j + 1;10: int l = num.length - 1;11:12: while (k < l) {13: int sum = num[i] + num[j] + num[k] + num[l];14:15: if (sum > target) {16: l--;17: } else if (sum < target) {18: k++;19: } else if (sum == target) {20: ArrayList<Integer> temp = new ArrayList<Integer>();21: temp.add(num[i]);22: temp.add(num[j]);23: temp.add(num[k]);24: temp.add(num[l]);25:26: if (!hashSet.contains(temp)) {27: hashSet.add(temp);28: result.add(temp);29: }30:31: k++;32: l--;33: }34: }35: }36: }37:38: return result;39: }
Here is the hashCode method of ArrayList. It makes sure that if all elements of two lists are the same, then the hash code of the two lists will be the same. Since each element in the ArrayList is Integer, same integer has same hash code.
1: int hashCode = 1;2: Iterator<E> i = list.iterator();3: while (i.hasNext()) {4: E obj = i.next();5: hashCode = 31*hashCode + (obj==null ? 0 : obj.hashCode());6: }
六、3Sum Closest
Given an array S of n integers, find three integers in S such that the sum is closest to a given number, target. Return the sum of the three integers. You may assume that each input would have exactly one solution.
For example, given array S = {-1 2 1 -4}, and target = 1.
The sum that is closest to the target is 2. (-1 + 2 + 1 = 2).
Analysis
This problem is similar to 2 Sum. This kind of problem can be solved by using a similar approach, i.e., two pointers from both left and right.
Java Solution
1: public int threeSumClosest(int[] nums, int target) {2: int min = Integer.MAX_VALUE;3: int result = 0;4: Arrays.sort(nums);5: for (int i = 0; i < nums.length; i++) {6: int j = i + 1;7: int k = nums.length - 1;8: while (j < k) {9: int sum = nums[i] + nums[j] + nums[k];10: int diff = Math.abs(sum - target);11: if(diff == 0) return sum;12: if (diff < min) {13: min = diff;14: result = sum;15: }16: if (sum <= target) {17: j++;18: } else {19: k--;20: }21: }22: }23:24: return result;25: }
Time Complexity is O(n^2).
[算法]K-SUM problem的更多相关文章
- summary of k Sum problem and solutions in leetcode
I found summary of k Sum problem and solutions in leetcode on the Internet. http://www.sigmainfy.com ...
- 求和问题总结(leetcode 2Sum, 3Sum, 4Sum, K Sum)
转自 http://tech-wonderland.net/blog/summary-of-ksum-problems.html 前言: 做过leetcode的人都知道, 里面有2sum, 3sum ...
- k sum 问题系列
转自:http://tech-wonderland.net/blog/summary-of-ksum-problems.html (中文旧版)前言: 做过leetcode的人都知道, 里面有2sum, ...
- LeetCode解题报告--2Sum, 3Sum, 4Sum, K Sum求和问题总结
前言: 这几天在做LeetCode 里面有2sum, 3sum(closest), 4sum等问题, 这类问题是典型的递归思路解题.该这类问题的关键在于,在进行求和求解前,要先排序Arrays.sor ...
- lintcode: k Sum 解题报告
K SUM My Submissions http://www.lintcode.com/en/problem/k-sum/ 题目来自九章算法 13% Accepted Given n distinc ...
- HDu 1001 Sum Problem 分类: ACM 2015-06-19 23:38 12人阅读 评论(0) 收藏
Sum Problem Time Limit: 1000/500 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total ...
- HD2058The sum problem
The sum problem Time Limit: 5000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Tot ...
- Maxmum subsequence sum problem
We have a lot of ways to solve the maximum subsequence sum problem, but different ways take differen ...
- NYOJ--927--dfs--The partial sum problem
/* Name: NYOJ--927--The partial sum problem Author: shen_渊 Date: 15/04/17 19:41 Description: DFS,和 N ...
- 动态规划法(三)子集和问题(Subset sum problem)
继续讲故事~~ 上次讲到我们的主人公丁丁,用神奇的动态规划法解决了杂货店老板的两个找零钱问题,得到了老板的肯定.之后,他就决心去大城市闯荡了,看一看外面更大的世界. 这天,丁丁刚回到家,他 ...
随机推荐
- 详述Centos中的ftp命令的使用方法
ftp服务器在网上较为常见,Linux ftp命令的功能是用命令的方式来控制在本地机和远程机之间传送文件,这里详细介绍Linux ftp命令的一些经常使用的命令,相信掌握了这些使用Linux 进行ft ...
- hiho1080 更为复杂的买卖房屋姿势
题目链接: hihocoder1080 题解思路: 题目中对区间改动有两个操作: 0 区间全部点添加v 1 区间全部点改为v easy想到应该使用到两个懒惰标记 一个记录替换 一个记录增减 ...
- Ubuntu 16.04 安装opencv的各种方法(含opencv contrib扩展包安装方法)
Ubuntu 16.04 安装opencv的各种方法(含opencv contrib扩展包安装方法) https://blog.csdn.net/ksws0292756/article/details ...
- 基于树莓派3B+Python3.5的OpenCV3.4的配置教程
https://www.cnblogs.com/Pyrokine/p/8921285.html
- 快速用CMD打开当前目录
按住shift,鼠标右键,选择在此处打开命令行窗口.
- Boost学习总结(一)VS2010环境下编译STLport和Boost
Boost学习总结(一)VS2010环境下编译STLport和Boost Boost简介 Boost库是一个功能强大.构造精巧.跨平台.开源并且完全免费的C++程序库.1998年,Beman G.Da ...
- git入门四(分支创建合并)
熟悉git分支的原理是掌握了git的精髓,因为git和我们常用的源码管理系统有很大的区别和优点在分支上可以体现出来,一般我们常用的源码管理系统分支都是需要创建新目录,有全新的源码copy,一般都需要创 ...
- Matlab典型论坛
Matlab典型论坛 http://www.ilovematlab.cn/forum.php?tid=271705&goto=lastpost
- 自己定义Application的未捕获异常处理
近期由于工作原因.进行Android应用开发时发现应用在出现类似空指针等异常时,抛出未被捕获的异常.Android系统有默认的未捕获异常处理器,默认行为是结束对应的线程,但并不会直接退出程序,并且在应 ...
- 阿里巴巴fastjson 包的使用解析json数据
Fastjson是一个Java语言编写的高性能功能完善的JSON库.由阿里巴巴公司团队开发的. 主要特性主要体现在以下几个方面: 1.高性能 fastjson采用独创的算法,将parse的速度提升到极 ...