统计日志文件中各访问状态的个数.

1.将日志数据上传到hdfs

路径 /mapreduce/data/apachelog/in 中

内容如下

::::::: - - [/Feb/::: +] "GET / HTTP/1.1"
::::::: - - [/Feb/::: +] "GET /tomcat.css HTTP/1.1"
::::::: - - [/Feb/::: +] "GET /tomcat.png HTTP/1.1"
::::::: - - [/Feb/::: +] "GET /bg-nav.png HTTP/1.1"
::::::: - - [/Feb/::: +] "GET /asf-logo.png HTTP/1.1"
::::::: - - [/Feb/::: +] "GET /bg-upper.png HTTP/1.1"
::::::: - - [/Feb/::: +] "GET /bg-button.png HTTP/1.1"
::::::: - - [/Feb/::: +] "GET /bg-middle.png HTTP/1.1"
127.0.0.1 - - [/Feb/::: +] "GET / HTTP/1.1"
127.0.0.1 - - [/Feb/::: +] "GET / HTTP/1.1"
::::::: - - [/Feb/::: +] "GET / HTTP/1.1"
::::::: - - [/Feb/::: +] "GET / HTTP/1.1"
127.0.0.1 - - [/Feb/::: +] "GET / HTTP/1.1"
127.0.0.1 - - [/Feb/::: +] "GET / HTTP/1.1"
::::::: - - [/Feb/::: +] "GET / HTTP/1.1"
::::::: - - [/Feb/::: +] "GET / HTTP/1.1"
127.0.0.1 - - [/Feb/::: +] "GET / HTTP/1.1"
127.0.0.1 - - [/Feb/::: +] "GET / HTTP/1.1"
::::::: - - [/Feb/::: +] "GET /sentiment_ms/login HTTP/1.1"
::::::: - - [/Feb/::: +] "GET / HTTP/1.1"
::::::: - - [/Feb/::: +] "GET / HTTP/1.1"

2.代码

package com.zhen.apachelog;

import java.io.IOException;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser; public class ApacheLog { public static class apacheMapper extends Mapper<Object, Text, Text, IntWritable>{ @Override
protected void map(Object key, Text value, Mapper<Object, Text, Text, IntWritable>.Context context)
throws IOException, InterruptedException {
String valueStr = value.toString();
String[] strings = valueStr.split("\" ");
String status = strings[].split(" ")[];
context.write(new Text(status), new IntWritable());
} } public static class apacheReduce extends Reducer<Text, IntWritable, Text, IntWritable>{ @Override
protected void reduce(Text key, Iterable<IntWritable> value,
Reducer<Text, IntWritable, Text, IntWritable>.Context context) throws IOException, InterruptedException {
int count = ;
for (IntWritable intWritable : value) {
count+=intWritable.get();
}
context.write(key, new IntWritable(count));
} } public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException { Configuration conf = new Configuration();
String[] otherArgs = new GenericOptionsParser(conf,args).getRemainingArgs(); Job job = new Job(conf,"ApacheLog");
job.setJarByClass(ApacheLog.class); job.setMapperClass(apacheMapper.class);
job.setReducerClass(apacheReduce.class); job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class); FileInputFormat.addInputPaths(job, args[]);
FileOutputFormat.setOutputPath(job, new Path(args[])); System.exit(job.waitForCompletion(true)?:);
} }

3.将代码生成jar包

4.调用

EFdeMacBook-Pro:hadoop-2.8.0 FengZhen$ hadoop jar /Users/FengZhen/Desktop/ApacheLog.jar com.zhen.apachelog.ApacheLog /mapreduce/data/apachelog/in /mapreduce/data/apachelog/out
17/09/13 15:32:22 INFO client.RMProxy: Connecting to ResourceManager at localhost/127.0.0.1:8032
17/09/13 15:32:23 INFO input.FileInputFormat: Total input files to process : 1
17/09/13 15:32:23 INFO mapreduce.JobSubmitter: number of splits:1
17/09/13 15:32:23 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1505268150495_0017
17/09/13 15:32:23 INFO impl.YarnClientImpl: Submitted application application_1505268150495_0017
17/09/13 15:32:23 INFO mapreduce.Job: The url to track the job: http://192.168.1.64:8088/proxy/application_1505268150495_0017/
17/09/13 15:32:23 INFO mapreduce.Job: Running job: job_1505268150495_0017
17/09/13 15:32:32 INFO mapreduce.Job: Job job_1505268150495_0017 running in uber mode : false
17/09/13 15:32:32 INFO mapreduce.Job: map 0% reduce 0%
17/09/13 15:32:37 INFO mapreduce.Job: map 100% reduce 0%
17/09/13 15:32:43 INFO mapreduce.Job: map 100% reduce 100%
17/09/13 15:32:43 INFO mapreduce.Job: Job job_1505268150495_0017 completed successfully
17/09/13 15:32:43 INFO mapreduce.Job: Counters: 49
File System Counters
FILE: Number of bytes read=216
FILE: Number of bytes written=272795
FILE: Number of read operations=0
FILE: Number of large read operations=0
FILE: Number of write operations=0
HDFS: Number of bytes read=1776
HDFS: Number of bytes written=13
HDFS: Number of read operations=6
HDFS: Number of large read operations=0
HDFS: Number of write operations=2
Job Counters
Launched map tasks=1
Launched reduce tasks=1
Data-local map tasks=1
Total time spent by all maps in occupied slots (ms)=3160
Total time spent by all reduces in occupied slots (ms)=3167
Total time spent by all map tasks (ms)=3160
Total time spent by all reduce tasks (ms)=3167
Total vcore-milliseconds taken by all map tasks=3160
Total vcore-milliseconds taken by all reduce tasks=3167
Total megabyte-milliseconds taken by all map tasks=3235840
Total megabyte-milliseconds taken by all reduce tasks=3243008
Map-Reduce Framework
Map input records=21
Map output records=21
Map output bytes=168
Map output materialized bytes=216
Input split bytes=150
Combine input records=0
Combine output records=0
Reduce input groups=2
Reduce shuffle bytes=216
Reduce input records=21
Reduce output records=2
Spilled Records=42
Shuffled Maps =1
Failed Shuffles=0
Merged Map outputs=1
GC time elapsed (ms)=54
CPU time spent (ms)=0
Physical memory (bytes) snapshot=0
Virtual memory (bytes) snapshot=0
Total committed heap usage (bytes)=358612992
Shuffle Errors
BAD_ID=0
CONNECTION=0
IO_ERROR=0
WRONG_LENGTH=0
WRONG_MAP=0
WRONG_REDUCE=0
File Input Format Counters
Bytes Read=1626
File Output Format Counters
Bytes Written=13

5.查看结果

EFdeMacBook-Pro:lib FengZhen$ hadoop fs -ls /mapreduce/data/apachelog/out
Found 2 items
-rw-r--r-- 1 FengZhen supergroup 0 2017-09-13 15:32 /mapreduce/data/apachelog/out/_SUCCESS
-rw-r--r-- 1 FengZhen supergroup 13 2017-09-13 15:32 /mapreduce/data/apachelog/out/part-r-00000
EFdeMacBook-Pro:lib FengZhen$ hadoop fs -text /mapreduce/data/apachelog/out/part-r-00000
200 8
404 13

统计apachelog各访问状态个数(使用MapReduce)的更多相关文章

  1. 部署Nginx网站服务实现访问状态统计以及访问控制功能

    原文:https://blog.51cto.com/11134648/2130987 Nginx专为性能优化而开发,最知名的优点是它的稳定性和低系统资源消耗,以及对HTTP并发连接的高处理能力,单个物 ...

  2. shell+curl监控网站页面(域名访问状态),并利用sedemail发送邮件

    应领导要求,对公司几个主要站点的域名访问情况进行监控.下面分享一个监控脚本,并利用sendemail进行邮件发送. 监控脚本如下:下面是写了一个多线程的网站状态检测脚本,直接从文件中读出站点地址,然后 ...

  3. Javascript 统计复选框选中个数

    var checked = document.getElementsByName("checked_c[]"); var checked_counts = 0; for(var i ...

  4. 学习笔记_过滤器应用_1(分ip统计网站的访问次数)

    分ip统计网站的访问次数 ip count 192.168.1.111 2 192.168.1.112 59 统计工作需要在所有资源之前都执行,那么就可以放到Filter中了. 我们这个过滤器不打算做 ...

  5. Linux 统计文件夹下文件个数

    查看统计当前目录下文件的个数,包括子目录里的. ls -lR| grep "^-" | wc -l Linux下查看某个目录下的文件.或文件夹个数用到3个命令:ls列目录.用gre ...

  6. 学c语言做练习之​统计文件中字符的个数

    统计文件中字符的个数(采用命令行参数) #include<stdio.h> #include<stdlib.h> int main(int argc, char *argv[] ...

  7. 题目--统计一行文本的单词个数(PTA预习题)

    PTA预习题——统计一行文本的单词个数 7-1 统计一行文本的单词个数 (15 分) 本题目要求编写程序统计一行字符中单词的个数.所谓“单词”是指连续不含空格的字符串,各单词之间用空格分隔,空格数可以 ...

  8. shell+curl监控网站页面(域名访问状态),并利用sendemail发送邮件

    应领导要求,对公司几个主要站点的域名访问情况进行监控.下面分享一个监控脚本,并利用sendemail进行邮件发送. 监控脚本如下:下面是写了一个多线程的网站状态检测脚本,直接从文件中读出站点地址,然后 ...

  9. Linux上统计文件夹下文件个数以及目录个数

    对于linux终端用户而言,统计文件夹下文件的多少是经常要做的操作,于我而言,我会经常在谷歌搜索一个命令,“如何在linux统计文件夹的个数”,然后点击自己想要的答案,但是有时候不知道统计文件夹命令运 ...

随机推荐

  1. String、StringBuffer、StringBuilder区别并验证

    © 版权声明:本文为博主原创文章,转载请注明出处 String.StringBuffer.StringBuilder的区别 1.String是一个常量,其对象一旦创建完毕就无法改变,当使用“+”拼接字 ...

  2. java.String中的方法

    (String) str.trim() 该方法返回一个复制该字符串的开头和结尾的白色空格去掉,或字符串,如果它没有头或尾空白. (Boolean) str.contains(str1) 判断 str ...

  3. Atitit.Java exe bat  作为windows系统服务程序运行

    Atitit.Java exe bat  作为windows系统服务程序运行 1. 使用SC命令+srvany.exe (不错,推荐)+net start1 1.1. First 创建一个java的运 ...

  4. SQL 时间格式转换

    ------- 获取当前时间 -------- DECLARE @currentTime varchar(); SET @currentTime = CONVERT(VARCHAR(),GETDATE ...

  5. NPOI 添加下拉列表

    需求 给指定列添加下拉列表.如下图: 思路 NPOI的文档网站不能访问了,这里参考的POI文档. 加下拉列表有两种方式,一种直接写字符串,例如 new String[]{"10", ...

  6. appium mac 下 安装及踩坑

    Appium Appium是一个开源.跨平台的测试框架,可以用来测试原生及混合的移动端应用.Appium支持IOS.Android及FirefoxOS平台.Appium使用WebDriver的json ...

  7. Hadoop MapReduce八大步骤以及Yarn工作原理详解

    Hadoop是市面上使用最多的大数据分布式文件存储系统和分布式处理系统, 其中分为两大块分别是hdfs和MapReduce, hdfs是分布式文件存储系统, 借鉴了Google的GFS论文. MapR ...

  8. Android蓝牙通信具体解释

    蓝牙通信的大概过程例如以下: 1.首先开启蓝牙 2,搜索可用设备 3,创建蓝牙socket.获取输入输出流 4,读取和写入数据 5.断开连接关闭蓝牙 还要发送配对码发送进行推断! 以下是全部的源码:不 ...

  9. git 撤销已经push到远端的代码

    其实是没有直接让远端代码回复到某次的指令,实现撤销push的思路如下: 1.先让代码恢复到想要恢复的前一次提交记录 2.重新提交代码,覆盖端上的代码,就相当于撤销了push 的提交 实现方式如下: 1 ...

  10. iOS开发 剖析网易新闻标签栏视图切换(addChildViewController属性介绍)

    本文转载至 http://www.tuicool.com/articles/3ymMzub CSDN博客原文  http://blog.csdn.net/hmt20130412/article/det ...