如何生成斐波那契數列

  斐波那契(Fibonacci)數列是一个非常简单的递归数列,除第一个和第二个数外,任意一个数都可由前两个数相加得到。用计算机程序输出斐波那契數列的前 N 个数是一个非常简单的问题,许多初学者都可以轻易写出如下函数:

  清单 1. 简单输出斐波那契數列前 N 个数

1
2
3
4
5
6
def fab(max):
   n, a, b = 0, 0, 1
   while n < max:
       print b
       a, b = b, a + b
       n = n + 1

  执行 fab(5),我们可以得到如下输出:

1
2
3
4
5
6
>>> fab(5)
1
1
2
3
5

  结果没有问题,但有经验的开发者会指出,直接在 fab 函数中用 print 打印数字会导致该函数可复用性较差,因为 fab 函数返回 None,其他函数无法获得该函数生成的数列。

  要提高 fab 函数的可复用性,最好不要直接打印出数列,而是返回一个 List。以下是 fab 函数改写后的第二个版本:

  清单 2. 输出斐波那契數列前 N 个数第二版

1
2
3
4
5
6
7
8
def fab(max):
   n, a, b = 0, 0, 1
   L = []
   while n < max:
       L.append(b)
       a, b = b, a + b
       n = n + 1
   return L

  可以使用如下方式打印出 fab 函数返回的 List:

1
2
3
4
5
6
7
8
>>> for n in fab(5):
...     print n
...
1
1
2
3
5

  改写后的 fab 函数通过返回 List 能满足复用性的要求,但是更有经验的开发者会指出,该函数在运行中占用的内存会随着参数 max 的增大而增大,如果要控制内存占用,最好不要用 List

  来保存中间结果,而是通过 iterable 对象来迭代。例如,在 Python2.x 中,代码:

  清单 3. 通过 iterable 对象来迭代

1
for i in range(1000): pass

  会导致生成一个 1000 个元素的 List,而代码:

1
for i in xrange(1000): pass

  则不会生成一个 1000 个元素的 List,而是在每次迭代中返回下一个数值,内存空间占用很小。因为 xrange 不返回 List,而是返回一个 iterable 对象。

  利用 iterable 我们可以把 fab 函数改写为一个支持 iterable 的 class,以下是第三个版本的 Fab:

  清单 4. 第三个版本

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
class Fab(object):
 
   def __init__(self, max):
       self.max = max
       self.n, self.a, self.b = 0, 0, 1
 
   def __iter__(self):
       return self
 
   def next(self):
       if self.n < self.max:
           r = self.b
           self.a, self.b = self.b, self.a + self.b
           self.n = self.n + 1
           return r
       raise StopIteration()

  Fab 类通过 next() 不断返回数列的下一个数,内存占用始终为常数:

1
2
3
4
5
6
7
8
>>> for n in Fab(5):
...     print n
...
1
1
2
3
5

  然而,使用 class 改写的这个版本,代码远远没有第一版的 fab 函数来得简洁。如果我们想要保持第一版 fab 函数的简洁性,同时又要获得 iterable 的效果,yield 就派上用场了:

  清单 5. 使用 yield 的第四版

1
2
3
4
5
6
7
8
9
def fab(max):
    n, a, b = 0, 0, 1
    while n < max:
        yield b
        # print b
        a, b = b, a + b
        n = n + 1
 
'''

  第四个版本的 fab 和第一版相比,仅仅把 print b 改为了 yield b,就在保持简洁性的同时获得了 iterable 的效果。

  调用第四版的 fab 和第二版的 fab 完全一致:

1
2
3
4
5
6
7
8
>>> for n in fab(5):
...     print n
...
1
1
2
3
5

  简单地讲,yield 的作用就是把一个函数变成一个 generator,带有 yield 的函数不再是一个普通函数,Python 解释器会将其视为一个 generator,调用 fab(5) 不会执行 fab 函数,而是返回一个 iterable 对象!在 for 循环执行时,每次循环都会执行 fab 函数内部的代码,执行到 yield b 时,fab 函数就返回一个迭代值,下次迭代时,代码从 yield b 的下一条语句继续执行,而函数的本地变量看起来和上次中断执行前是完全一样的,于是函数继续执行,直到再次遇到 yield。

  也可以手动调用 fab(5) 的 next() 方法(因为 fab(5) 是一个 generator 对象,该对象具有 next() 方法),这样我们就可以更清楚地看到 fab 的执行流程:

  清单 6. 执行流程

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
>>> f = fab(5)
>>> f.next()
1
>>> f.next()
1
>>> f.next()
2
>>> f.next()
3
>>> f.next()
5
>>> f.next()
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
StopIteration

  当函数执行结束时,generator 自动抛出 StopIteration 异常,表示迭代完成。在 for 循环里,无需处理 StopIteration 异常,循环会正常结束。

  我们可以得出以下结论:

  一个带有 yield 的函数就是一个 generator,它和普通函数不同,生成一个 generator 看起来像函数调用,但不会执行任何函数代码,直到对其调用 next()(在 for 循环中会自动调用 next())才开始执行。虽然执行流程仍按函数的流程执行,但每执行到一个 yield 语句就会中断,并返回一个迭代值,下次执行时从 yield 的下一个语句继续执行。看起来就好像一个函数在正常执行的过程中被 yield 中断了数次,每次中断都会通过 yield 返回当前的迭代值。

  yield 的好处是显而易见的,把一个函数改写为一个 generator 就获得了迭代能力,比起用类的实例保存状态来计算下一个 next() 的值,不仅代码简洁,而且执行流程异常清晰。

  如何判断一个函数是否是一个特殊的 generator 函数?可以利用 isgeneratorfunction 判断:

  清单 7. 使用 isgeneratorfunction 判断

1
2
3
>>> from inspect import isgeneratorfunction
>>> isgeneratorfunction(fab)
True

  要注意区分 fab 和 fab(5),fab 是一个 generator function,而 fab(5) 是调用 fab 返回的一个 generator,好比类的定义和类的实例的区别:

  清单 8. 类的定义和类的实例

1
2
3
4
5
>>> import types
>>> isinstance(fab, types.GeneratorType)
False
>>> isinstance(fab(5), types.GeneratorType)
True

  fab 是无法迭代的,而 fab(5) 是可迭代的:

1
2
3
4
5
>>> from collections import Iterable
>>> isinstance(fab, Iterable)
False
>>> isinstance(fab(5), Iterable)
True

  每次调用 fab 函数都会生成一个新的 generator 实例,各实例互不影响:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
>>> f1 = fab(3)
>>> f2 = fab(5)
>>> print 'f1:', f1.next()
f1: 1
>>> print 'f2:', f2.next()
f2: 1
>>> print 'f1:', f1.next()
f1: 1
>>> print 'f2:', f2.next()
f2: 1
>>> print 'f1:', f1.next()
f1: 2
>>> print 'f2:', f2.next()
f2: 2
>>> print 'f2:', f2.next()
f2: 3
>>> print 'f2:', f2.next()
f2: 5

  return 的作用

  在一个 generator function 中,如果没有 return,则默认执行至函数完毕,如果在执行过程中 return,则直接抛出 StopIteration 终止迭代。

http://www.admin10000.com/document/1431.html

yield生成器的经典案例的更多相关文章

  1. 汇总java生态圈常用技术框架、开源中间件,系统架构及经典案例等

    转自:http://www.51testing.com/html/83/n-3718883.html 有人认为编程是一门技术活,要有一定的天赋,非天资聪慧者不能及也.非也,这是近几年,对于技术这碗饭有 ...

  2. javascript的理解及经典案例

    js的简介: JavaScript是一种能让你的网页更加生动活泼的程式语言,也是目前网页中设计中最容易学又最方便的语言. 你可以利用JavaScript轻易的做出亲切的欢迎讯息.漂亮的数字钟.有广告效 ...

  3. jQuery基础的工厂函数以及定时器的经典案例

    1. jQuery的基本信息:  1.1 定义: jQuery是JavaScript的程序库之一,它是JavaScript对象和实用函数的封装, 1.2 作用: 许多使用JavaScript能实现的交 ...

  4. Linux运维之道(大量经典案例、问题分析,运维案头书,红帽推荐)

    Linux运维之道(大量经典案例.问题分析,运维案头书,红帽推荐) 丁明一 编   ISBN 978-7-121-21877-4 2014年1月出版 定价:69.00元 448页 16开 编辑推荐 1 ...

  5. 经典案例:那些让人赞不绝口的创新 HTML5 网站

    在过去的10年里,网页设计师使用 Flash.JavaScript 或其他复杂的软件和技术来创建网站.但现在你可以前所未有的快速.轻松地设计或创造互动的.有趣好看的网站.如何创建?答案是 HTML5 ...

  6. Altera OpenCL用于计算机领域的13个经典案例(转)

    英文出自:Streamcomputing 转自:http://www.csdn.net/article/2013-10-29/2817319-the-application-areas-opencl- ...

  7. php中foreach()函数与Array数组经典案例讲解

    //php中foreach()函数与Array数组经典案例讲解 function getVal($v) { return $v; //可以加任意检查代码,列入要求$v必须是数字,或过滤非法字符串等.} ...

  8. 阿里云资深DBA专家罗龙九:云数据库十大经典案例分析【转载】

    阿里云资深DBA专家罗龙九:云数据库十大经典案例分析 2016-07-21 06:33 本文已获阿里云授权发布,转载具体要求见文末 摘要:本文根据阿里云资深DBA专家罗龙九在首届阿里巴巴在线峰会的&l ...

  9. 经典案例之MouseJack

    引言:在昨天的文章<无线键鼠监听与劫持>中,我们提到今天会向您介绍一个无线键鼠的监听与劫持的经典案例,<MouseJack>:MouseJack能利用无线鼠标和键盘存在的一些问 ...

随机推荐

  1. openWRT自学计划安排

    目标:充分理解openwrt的框架构成,能够在openwrt框架下实现:开发新程序,修改现有程序,修改内核,修改boot.为此,制定如下计划: 一.如何在openwrt上做开发 1.编译出一个BRCM ...

  2. CentOS6.4下编译安装Apache2.4+PHP5.6

    安装Apache2.4: 首先从  http://httpd.apache.org/download.cgi#apache24下载apache源码包httpd-2.4.4.tar.gz从  http: ...

  3. 创建有提示的ui组件

    using UnityEditor; using UnityEngine; using System.Collections; using Edelweiss.CloudSystem; namespa ...

  4. linux卸载一个源码包安装的软件的流程

    完全卸载memcached的方法(CentOS) 我的大内存vps(centos系统)曾经安装过memcached,想给论坛提速,实际上不但没有明显效果,反倒耗费内存,看着碍眼,于是想卸载,于是网上各 ...

  5. Linux进程间通信(四) - 共享内存

    共享内存的优势 采用共享内存通信的一个显而易见的好处是效率高,因为进程可以直接读写内存,而不需要任何数据的拷贝.对于像管道和消息队列等通信方式,则需要在内核和用户空间进行四次的数据拷贝,而共享内存则只 ...

  6. RMQ with Shifts(线段树)

    RMQ with Shifts Time Limit:1000MS     Memory Limit:65535KB     64bit IO Format:%I64d & %I64u Pra ...

  7. bash批量去前缀

    #!/bin/sh for aFile in *; do oldfile=`basename "$aFile"` newfile=${oldfile::} echo ${oldfi ...

  8. Java中List.remove报UnsupportedOperationException异常

    今天项目中有个需求场景: A和B都是List,而B是A的子集,现在想求A和B的差集. 想到了List中提供的removeAll()方法可以求得差集,但是结果确报了UnsupportedOperatio ...

  9. ibatis中井号跟美元符号区别(#.$)

    1.#可以进行预编译,进行类型匹配,#变量名# 会转化为 jdbc 的 类型 $不进行数据类型匹配,$变量名$就直接把 $name$替换为 name的内容 例如: select * from tabl ...

  10. iOS11 push控制器tabbar上移问题

    解决方法 - (void)pushViewController:(UIViewController *)viewController animated:(BOOL)animated { // 如果有大 ...