点此看题面

大致题意: 总共有\(n\)个宝物和\(k\)个回合,每个回合系统将随机抛出一个宝物(抛出每个宝物的概率皆为\(1/n\)),吃掉一个宝物可以获得一定的积分(积分可能为负),而吃掉某个宝物有一定的前提,即先吃掉若干种宝物每个至少一次,才能吃掉该宝物。请你求出在最优策略的情况下的最优得分。

状压\(DP\)

由于这道题的数据范围很小,我们可以考虑状压\(DP\),状压DP就是用一个数二进制下的每一位来存储一个信息,这里就用来存储某个宝物是否被吃掉过

我们可以用\(f[i][j]\)记录第\(i\)个回合,当前状态为\(j\)时能获得的最大收益。

如果我们正着DP,那么显然可以发现,当我们要从一个状态转移至另一个状态时,有可能前一个状态无法得到,因此我们要倒着推

这样,我们就能得出DP转移方程:

f[i][j]+=max(f[i+1][j],f[i+1][j|(1<<(q-1))]+a[q]);

其中,我们要满足当前状态\(j\)满足吃掉宝物\(q\)所需的条件,然后枚举每一个符合条件的\(j\)即可。

注意,要判断当前状态\(j\)是否满足条件,有个很简单的方法:判断\(j\)&\(s[q]\)(\(s[q]\)存储吃掉宝物\(q\)所需的条件,这里也利用了状态压缩)是否等于\(s[q]\),如果相等,便说明\(j\)这个状态中包含了\(s[q]\),即说明当前状态满足吃掉宝物\(q\)所需的条件。

状压\(DP\)

#include<bits/stdc++.h>
#define N 15
#define K 100
using namespace std;
int n,k,a[N+5],s[N+5];
double f[K+5][(1<<N)+5];
inline char tc()
{
static char ff[100000],*A=ff,*B=ff;
return A==B&&(B=(A=ff)+fread(ff,1,100000,stdin),A==B)?EOF:*A++;
}
inline void read(int &x)
{
x=0;int f=1;char ch;
while(!isdigit(ch=tc())) f=ch^'-'?1:-1;
while(x=(x<<3)+(x<<1)+ch-'0',isdigit(ch=tc()));
x*=f;
}
int main()
{
register int i,j,q;
for(read(k),read(n),i=1;i<=n;++i)
for(read(a[i]),read(j),s[i]=0;j;read(j))
s[i]|=1<<(j-1);//用状态压缩将吃掉宝物所需的条件存储下来
for(i=k;i;--i)//倒着进行DP
for(j=0;j<(1<<n);++j)
{
for(q=1;q<=n;++q)
{
if((j&s[q])==s[q]) f[i][j]+=max(f[i+1][j],f[i+1][j|(1<<(q-1))]+a[q]);//判断是否满足条件,更新答案
else f[i][j]+=f[i+1][j];
}
f[i][j]/=n;//由于每种情况的概率是1/n,所以要除以n
}
return printf("%.6lf",f[1][0]),0;
}

【BZOJ1076】[SCOI2008] 奖励关(状压DP)的更多相关文章

  1. [BZOJ1076][SCOI2008]奖励关 状压dp

    1076: [SCOI2008]奖励关 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 3070  Solved: 1595[Submit][Statu ...

  2. BZOJ1076:[SCOI2008]奖励关(状压DP,期望)

    Description 你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关.在这个奖励关里,系统将依次随机抛出k次宝物, 每次你都可以选择吃或者不吃(必须在抛出下一个宝物之前做出选择,且现在决定不吃的 ...

  3. 【BZOJ1076】[SCOI2008]奖励关 状压DP+期望

    [BZOJ1076][SCOI2008]奖励关 Description 你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关.在这个奖励关里,系统将依次随机抛出k次宝物,每次你都可以选择吃或者不吃(必须 ...

  4. SCOI2008奖励关 [状压dp]

    题目描述 你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关.在这个奖励关里,系统将依次随机抛出k次宝物,每次你都可以选择吃或者不吃(必须在抛出下一个宝物之前做出选择,且现在决定不吃的宝物以后也不能再 ...

  5. B1076 [SCOI2008]奖励关 状压dp&&期望dp

    这个题的n<15,一看就是状压dp.但是状态不是很好想.f[][]存i关的状态j. 这个题另一个关键思想在于倒推,我一开始想的是正推,但是只能记忆化了. 题干: 题目描述 你正在玩你最喜欢的电子 ...

  6. 洛谷 P2473 [SCOI2008]奖励关(状压dp+期望)

    题面 luogu 题解 \(n \leq 15\) 状压 \(f[i][S]\)表示第\(i\)轮,吃过的集合为\(S\) 正着转移好像有点复杂 考虑逆推转移(正着转移应该也行) \(f[i][S]\ ...

  7. 洛谷P2473奖励关——状压DP

    题目:https://www.luogu.org/problemnew/show/P2473 还是对DP套路不熟悉... 像这种前面影响后面,而后面不影响前面的问题就应该考虑倒序递推: 看n只有15那 ...

  8. [SCOI2008]奖励关 - 状压动规 - 概率与期望

    Description 你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关.在这个奖励关里,系统将依次随机抛出k次宝物,每次你都可以选择吃或者不吃(必须在抛出下一个宝物之前做出选择,且现在决定不吃的宝 ...

  9. BZOJ1076 [SCOI2008]奖励关 【状压dp + 数学期望】

    1076: [SCOI2008]奖励关 Time Limit: 10 Sec  Memory Limit: 128 MB Submit: 3074  Solved: 1599 [Submit][Sta ...

  10. bzoj1076: [SCOI2008]奖励关(期望dp+状压dp)

    1076: [SCOI2008]奖励关 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2989  Solved: 1557[Submit][Statu ...

随机推荐

  1. 洛谷P3694 邦邦的大合唱站队/签到题

    P3694 邦邦的大合唱站队/签到题 题目背景 BanG Dream!里的所有偶像乐队要一起大合唱,不过在排队上出了一些问题. 题目描述 N个偶像排成一列,他们来自M个不同的乐队.每个团队至少有一个偶 ...

  2. 5.Python初窥门径(字典)

    Python字典学习 1.字典初识 ​ 1.字典的简单介绍 ​ 字典(dict),是python中唯一的映射类型.他是以{ }括起来的键值对组成.在dict中key是唯一的.在保存的时候,根据key来 ...

  3. [Inside HotSpot] Epsilon GC

    1. Epsilon GC简介 Epsilon GC源于RedHat开发者Aleksey Shipilëv提交的一份JEP 318: Epsilon: A No-Op Garbage Collecto ...

  4. POJ1023 The Fun Number System

    题目来源:http://poj.org/problem?id=1023 题目大意: 有一种有趣的数字系统.类似于我们熟知的二进制,区别是每一位的权重有正有负.(低位至高位编号0->k,第i位的权 ...

  5. Leetcode初级算法(链表篇)

    删除链表的倒数第N个节点 感觉自己对于链表的知识还是了解的不够深入,所以没有想到用双指针进行操作.我的想法是这样的,首先计算整个链表的长度,然后遍历到长度减去n的节点处,执行删除操作. 自己的代码: ...

  6. iptables端口转发规则(内网端口转外网端口)

    需求:外网124.202.173.118需要访问 10.45.225.70的内网54032端口,10.45.225.70服务器有公网地址139.129.109.81将内网地址端口转发到外网地址端口,并 ...

  7. 项目 08 WebSocket

    项目班 08 WebSocket app.py 更新 添加两个路由 handlers = [ ('/', main.IndexHandler), ('/explore', main.ExploreHa ...

  8. WPF 使用 fontawesome

    <Style TargetType="TextBlock" x:Key="tree-icon"> <Style.Setters> < ...

  9. Linux定时清理30天前的Tomcat日志脚本

    一.在tomcat的log路径下新建.sh脚本文件clean.sh,内容如下:#!/bin/bashlogs_path="/mnt/tomcat/apache-tomcat-8.5.23/l ...

  10. hutool java工具架包功能介绍

    https://blog.csdn.net/lx1309244704/article/details/76459718