Links:

Shortpath Codes

Remove Background Color

# Usage: ipython --pdb removeColor.py 18
#! /usr/bin/env python
import itertools as it
import collections as ct
import cv2 as cv
import numpy as np
import pandas as pd def calculate_top_color(image):
a = image.copy()
cnt = ct.Counter(a)
topTen = cnt.most_common(10)
topTenColors=[k for k,v in topTen]
topColor=np.array(topTenColors).mean()
return topColor def replace_color(image, top=None, threshold=5, color=255):
color_threshold = threshold
a = image.copy()
s = pd.Series(image.flatten())
rows, cols = image.shape
topColor0 = top or calculate_top_color(s)
topColor = top or int(s.describe()['50%'])
colorMin = topColor - color_threshold
colorMax = topColor + color_threshold
print(s.describe(), '\n', "TopColor: %s, %s\n" % (topColor, topColor0))
for r in range(rows):
for c in range(cols):
val = a.item(r, c)
if colorMin <= val < colorMax:
a.itemset((r, c), color)
return a def remove_top_color(img, top=None, threshold=18, color=255):
b, g, r =img[:, :, 0], img[:, :, 1], img[:, :, 2]
print("\nProcessing Color Channel: BLUE")
b = replace_color(b, top, threshold, color) print("\nProcessing Color Channel: GREEN")
g = replace_color(g, top, threshold, color) print("\nProcessing Color Channel: RED")
r = replace_color(r, top, threshold, color)
img0 = cv.merge((b, g, r))
return img0 if __name__ == "__main__":
import os,sys
threshold = int(sys.argv[1]) if len(sys.argv) > 1 else 18
# Load the image first
img_path = './Signature.jpg'
img0 = cv.imread(img_path)
assert img0 is not None, "file could not be read, check with os.path.exists('%s')" % img_path cv.imwrite('Original.jpg', img0)
img1 = remove_top_color(img0, threshold=threshold)
cv.imwrite('Output.jpg', img1)
import itertools as it
import collections as ct
import cv2 as cv
import numpy as np
import pandas as pd # Load the image first
img_path = './Signature.jpg'
img = cv.imread(img_path)
assert img is not None, "file could not be read, check with os.path.exists('%s')" % img_path # Color Channels Splitting and merging
b, g, r =img[:, :, 0], img[:, :, 1], img[:, :, 2] # faster than cv.split(img)
a = b.flatten()
# Save the original image
img0 = cv.merge((b, g, r))
cv.imwrite('Original.jpg', img0) # Using Python's collections.Counter()
import collections as ct
topTen = ct.Counter(a).most_common(10) # Using Pandas for Number Analysis and Statistics
ss, df = pd.Series(a), pd.DataFrame(b) # Pandas Descriptive statistics Summarizing data: describe
ss.describe() # Pandas: **select specific percentiles**:
# By default, the median is always included
percentiles = [0.05, 0.25, 0.75, 0.95]
ss.describe(percentiles=percentiles) # Graystyle
gray_img = cv.cvtColor(img, cv.COLOR_BGR2GRAY) # bgSubtractor for background removal
bgSuber = cv.bgsegm.createBackgroundSubtractorMOG()
bgSuber.apply(img)
bgSuber_img = bgSuber.apply(img)
cv.imwrite('bgSuber.jpg', bgSuber_img)
# Perform morphology operation
morph_kernel = cv.getStructuringElement(cv.MORPH_ELLIPSE, (5, 5))
mask = cv.morphologyEx(bgSuber_img, cv.MORPH_CLOSE, morph_kernel)
res = cv.bitwise_and(img, img, mask=mask)
cv.imwrite('Result.jpg', res)

Accessing Image Properties

  • Image properties include "number of rows, columns, and channels"; "type of image data"; "number of pixels"; etc.
  • Note:
    • it is a good method to check whether the loaded image is grayscale or color.
    • img.dtype is very important while debugging,

      because a large number of errors in OpenCV-Python code are caused by invalid datatype.
#1. **Total number of pixels** is accessed by `img.size`:
#2. **Image datatype** is obtained by `img.dtype`:
#3. **shape of an image** is accessed by `img.shape`, It returns
# a tuple of the number of rows, columns, and channels(if the image is color)
# a tuple of the number of rows and columns ONLY**if an image is grayscale**.
# **check whether the loaded image is grayscale or color** first by Using `3 == len(img.shape)` . print( img.shape, img.size, img.dtype)
(342, 548, 3) 562248 uint8

Splitting and Merging Image Channels

Sometimes you will need to work separately on the B,G,R channels of an image.

  • In this case, you need to split the BGR image into single channels.
  • In other cases, you may need to join these individual channels to create a BGR image.
  • Warning: cv.split() is a time costly operation. So use it only if necessary.

    Otherwise go for Numpy indexing.

You can do this simply by:

b, g, r = cv.split(img)
img = cv.merge((b, g, r)) # OR a better faster way by using **Numpy indexing** b, g, r =img[:,:,0], img[:,:,0] img[:,:,0]
img = cv.merge((b, g, r)) # Suppose you want to set all the red pixels to zero
# **Numpy indexing is faster**,
# so you do not need to split the channels first.: img[:,:,2] = 0

Accessing and Modifying pixel values

You can access a pixel value by its row and column coordinates.

  • For BGR image, it returns an array of Blue, Green, Red values.
  • For grayscale image, just corresponding intensity is returned.
# Access a pixel value by its row and column coordinates
px = img[100, 100]
print( px )
[157 166 200] # an array of Blue, Green, Red values for BGR image
# accessing only blue pixel
blue = img[100, 100, 0]
print( blue )
157
#You can modify the pixel values the same way.
img[100, 100] = [255, 255, 255]
print( img[100, 100] )
[255 255 255] # **Better pixel accessing and editing method** : # accessing only RED value
img.item(10, 10, 2)
59
# modifying RED value
img.itemset((10, 10, 2), 100)
img.item(10, 10, 2)
100
  • Warning: Numpy is an optimized library for fast array calculations.

    So simply accessing each and every pixel value and modifying it will be very slow and it is discouraged.
  • Note
    • The above coordinates method is normally used for selecting a region of an array,

      say the first 5 rows and last 3 columns.
    • For individual pixel access, the Numpy array methods, array.item() and array.itemset() are considered better.

      They always return a scalar, however, so if you want to access all the B,G,R values, you will need to call array.item() separately for each value.

ROI of Image

Sometimes, you will have to play with certain regions of images. For eye detection in images:

  • first face detection is done over the entire image.
  • when a face is obtained, we select the face region alone and search for eyes inside it instead of searching the whole image. It improves:
    • accuracy, because eyes are always on faces ,
    • performance, because we search in a small area.

ROI is again obtained using Numpy indexing.

# Here I am selecting the ball and copying it to another region in the image:
ball = img[280:340, 330:390]
img[273:333, 100:160] = ball

Check the results below

Making Borders for Images (Padding)

If you want to create a border around an image, something like a photo frame,

you can use cv.copyMakeBorder(). But it has more applications for convolution operation, zero padding etc. This function takes following arguments:

  • src - input image
  • top, bottom, left, right - border width in number of pixels in corresponding directions
  • borderType - Flag defining what kind of border to be added. It can be following types:
    • cv.BORDER_CONSTANT - Adds a constant colored border. The value should be given as next argument.
    • cv.BORDER_REFLECT - Border will be mirror reflection of the border elements, like this : fedcba|abcdefgh|hgfedcb
    • cv.BORDER_REFLECT_101 or cv.BORDER_DEFAULT - Same as above, but with a slight change, like this : gfedcb|abcdefgh|gfedcba
    • cv.BORDER_REPLICATE - Last element is replicated throughout, like this: aaaaaa|abcdefgh|hhhhhhh
    • cv.BORDER_WRAP - Can't explain, it will look like this : cdefgh|abcdefgh|abcdefg
  • value - Color of border if border type is cv.BORDER_CONSTANT

Below is a sample code demonstrating all these border types for better understanding:

import cv2 as cv
import numpy as np
from matplotlib import pyplot as plt BLUE = [255, 0, 0] img1 = cv.imread('opencv-logo.png')
assert img1 is not None, "file could not be read, check with os.path.exists()" replicate = cv.copyMakeBorder(img1, 10,10,10,10, cv.BORDER_REPLICATE)
reflect = cv.copyMakeBorder(img1, 10,10,10,10, cv.BORDER_REFLECT)
reflect101 = cv.copyMakeBorder(img1, 10,10,10,10, cv.BORDER_REFLECT_101)
wrap = cv.copyMakeBorder(img1, 10,10,10,10, cv.BORDER_WRAP)
constant= cv.copyMakeBorder(img1, 10,10,10,10, cv.BORDER_CONSTANT,value=BLUE)
plt.subplot(231),plt.imshow(img1,'gray'),plt.title('ORIGINAL')
plt.subplot(232),plt.imshow(replicate,'gray'),plt.title('REPLICATE')
plt.subplot(233),plt.imshow(reflect,'gray'),plt.title('REFLECT')
plt.subplot(234),plt.imshow(reflect101,'gray'),plt.title('REFLECT_101')
plt.subplot(235),plt.imshow(wrap,'gray'),plt.title('WRAP')
plt.subplot(236),plt.imshow(constant,'gray'),plt.title('CONSTANT')
plt.show()

See the result below. (Image is displayed with matplotlib. So RED and BLUE channels will be interchanged):

SciTech-BigDataAI-ImageProcessing-Numerical Analysis-Useful Operations-Color Image Channels with OpenCV+NumPy+Pandas的更多相关文章

  1. 为什么要学习Numerical Analysis

    前几日我发了一个帖子,预告自己要研究一下  Numerical Analysis 非常多人问我为啥,我统一回答为AI-----人工智能 我在和教授聊天的时候,忽然到了语言发展上 我说:老S啊(和我关系 ...

  2. <<Numerical Analysis>>笔记

    2ed,  by Timothy Sauer DEFINITION 1.3A solution is correct within p decimal places if the error is l ...

  3. <Numerical Analysis>(by Timothy Sauer) Notes

    2ed,  by Timothy Sauer DEFINITION 1.3A solution is correct within p decimal places if the error is l ...

  4. Numerical Analysis

    PART1  <求解方程> 1,二分法 def bisect(f,a,b,TOL=0.000004): u_a = a u_b = b while(u_b-u_a)/2.0 > TO ...

  5. Residual (numerical analysis)

    In many cases, the smallness of the residual means that the approximation is close to the solution, ...

  6. List of numerical libraries,Top Numerical Libraries For C#

    Top Numerical Libraries For C# AlgLib (http://alglib.net) ALGLIB is a numerical analysis and data pr ...

  7. 【翻译】Kinect v2程序设计(C++) Color篇

    Kinect SDK v2预览版,获取数据的基本流程的说明.以及取得Color图像的示例程序的介绍. 上一节,是关于当前型号Kinect for Windows(后面称作Kinect v1)和次世代型 ...

  8. 常用python机器学习库总结

    开始学习Python,之后渐渐成为我学习工作中的第一辅助脚本语言,虽然开发语言是Java,但平时的很多文本数据处理任务都交给了Python.这些年来,接触和使用了很多Python工具包,特别是在文本处 ...

  9. (自用)专业排版套装:CTeX + TeXStudio

    \documentclass[UTF8,landscape]{ctexart}%UTF8,ctexart中文支持,landscape横向版面 \usepackage{tikz}%画图 \usepack ...

  10. CG&CAD resource

    Computational Geometry The Geometry Center (UIUC) Computational Geometry Pages (UIUC) Geometry in Ac ...

随机推荐

  1. Java编程--可变参数、foreach循环

    /** * 可变参数与foreach循环 * 可变参数:方法可以接受任意多个参数 * 方法格式(参数类型...变量) * 使用方法传入的该变量时当作数组对待 * foreach循环:快速对数组进行操作 ...

  2. 卢卡斯(lucas)定理

    对于质数 \(p\),有 \[{\Large \begin{aligned} & \binom{n}{m} \equiv \binom{\left \lfloor n/p \right \rf ...

  3. C# Environment.CurrentDirectory和AppDomain.CurrentDomain.BaseDirectory的区别

    Environment.CurrentDirectory 和 AppDomain.CurrentDomain.BaseDirectory 都是C#中用于获取当前应用程序的目录路径的方法,但是它们的用途 ...

  4. codeup之解密

    Description 有一行电文,已按如下规律译成密码: A–>Z a–>z B–>Y b–>y C–>X c–>x - - 即第一个字母变成第26个字母,第i个 ...

  5. Java Set的五种遍历方式

      摘要:介绍Java遍历Set的五种方式,并分析哪中方式效率高,建议使用增强for循环变量.   Set 和 List 遍历方式基本一致,本文介绍Set的遍历方式,并比较那种方法执行效率最高. 1. ...

  6. ESP32S3内网实现 WebSocket

    ESP32S3内网实现 WebSocket WebSocket 是一种网络通信协议,它提供了在单个 TCP 连接上进行全双工.双向通信的通道.它是为了在 Web 浏览器和服务器之间实现实时.高效的数据 ...

  7. 十步,做一个基于Claw Cloud的天气推送

    作者:故事我忘了¢ 个人微信公众号:程序猿的月光宝盒 目录 前言 步骤分解 步骤一 步骤二 步骤三 步骤四 步骤五 步骤六 步骤七 步骤八 步骤九 步骤十 对应的节点,鼠标移上去点三个小点,点rena ...

  8. 运维排查 | SaltStack 远程命令执行中文乱码问题

    哈喽大家好,我是咸鱼. 问题 我在一台服务器上写了一个简单的 Python 脚本 haha.py,内容如下: [root@localhost ~]# cat haha.py print("你 ...

  9. MCN机构如何用板栗看板打造内容工厂式效率?从短视频脚本到多平台分发的全流程协作管理

    一.内容为王的时代,MCN却陷入"人海混战" 在抖音.小红书.B站全面爆发的当下,MCN机构已成为内容产业链的核心角色.脚本创作.拍摄剪辑.品牌对接.渠道分发--每个流程都离不开高 ...

  10. Ant Design Mobile 覆盖默认的样式。

    直接在css中这样写是不行的,完全没有效果. .am-list-item.am-input-item { height: 36px; min-height: 30px; } 要像下面这样,加上glob ...