技术背景

在前面的一篇博客中我们介绍了MindSpore-2.4-gpu的安装和其中可能出现的一些问题。这里我们在安装完成之后,可以尝试使用一些MindSpore新版本的特性。那么在安装之后,如果是使用VSCode作为IDE,可以使用ctrl+shift+P快捷键,然后搜索python:sele将Python解释器切换到我们所需要的最新MindSpore环境下。

设备管理和资源监测

在mindspore-2.4版本中增加了mindspore.hal接口,可以用于管理设备、监测设备以及执行流的处理等等。例如,常用的获取设备的数量:

import mindspore as ms
ms.set_context(device_target="GPU")
device_target = ms.context.get_context("device_target")
print(ms.hal.device_count(device_target))
# 2

这个输出表明我们的环境下有两个GPU卡。也可以打印这两块显卡的名称:

import mindspore as ms
ms.set_context(device_target="GPU")
device_target = ms.context.get_context("device_target")
print(ms.hal.get_device_name(0, device_target))
print(ms.hal.get_device_name(1, device_target))
# Quadro RTX 4000
# Quadro RTX 4000

以及设备的可用状态:

import mindspore as ms
ms.set_context(device_target="GPU")
device_target = ms.context.get_context("device_target")
print(ms.hal.is_available(device_target))
# True

查询设备是否被初始化:

import mindspore as ms
ms.set_context(device_target="GPU")
device_target = ms.context.get_context("device_target")
print(ms.hal.is_initialized(device_target))
A = ms.Tensor([0.], ms.float32)
A2 = (A+A).asnumpy()
print(ms.hal.is_initialized(device_target))
# False
# True

这也说明,只有在计算的过程中,MindSpore才会将Tensor的数据传输到计算后端。除了设备管理之外,新版本的MindSpore还支持了一些内存监测的功能,对于性能管理非常的实用:

import mindspore as ms
import numpy as np
ms.set_context(device_target="GPU")
A = ms.Tensor(np.random.random(1000), ms.float32)
A2 = (A+A).asnumpy()
print(ms.hal.max_memory_allocated())
# 8192

这里输出的占用最大显存的Tensor的大小。需要说明的是,这里不能直接按照浮点数占用空间来进行计算,应该说MindSpore在构建图的过程中会产生一些额外的数据结构,这些数据结构也会占用一定的显存,但是显存增长的趋势是准确的。除了单个的打印,还可以整个的输出一个summary:

import mindspore as ms
import numpy as np
ms.set_context(device_target="GPU")
A = ms.Tensor(np.random.random(1000), ms.float32)
A2 = (A+A).asnumpy()
print(ms.hal.memory_summary())

输出的结果为:

|=============================================|
| Memory summary |
|=============================================|
| Metric | Data |
|---------------------------------------------|
| Reserved memory | 1024 MB |
|---------------------------------------------|
| Allocated memory | 4096 B |
|---------------------------------------------|
| Idle memory | 1023 MB |
|---------------------------------------------|
| Eager free memory | 0 B |
|---------------------------------------------|
| Max reserved memory | 1024 MB |
|---------------------------------------------|
| Max allocated memory | 8192 B |
|=============================================|

ForiLoop

其实简单来说就是一个内置的for循环的操作,类似于Jax中的fori_loop:

import mindspore as ms
import numpy as np
from mindspore import ops
ms.set_context(device_target="GPU") @ms.jit
def f(_, x):
return x + x A = ms.Tensor(np.ones(10), ms.float32)
N = 3
AN = ops.ForiLoop()(0, N, f, A).asnumpy()
print (AN)
# [8. 8. 8. 8. 8. 8. 8. 8. 8. 8.]

有了这个新的for循环体,我们可以对整个循环体做端到端自动微分:

import mindspore as ms
import numpy as np
from mindspore import ops, grad
ms.set_context(device_target="GPU", mode=ms.GRAPH_MODE) @ms.jit
def f(_, x):
return x + x @ms.jit
def s(x, N):
return ops.ForiLoop()(0, N, f, x) A = ms.Tensor(np.ones(10), ms.float32)
N = 3
AN = grad(s, grad_position=(0, ))(A, N).asnumpy()
print (AN)
# [8. 8. 8. 8. 8. 8. 8. 8. 8. 8.]

流计算

首先我们来看这样一个例子:

import mindspore as ms
import numpy as np
np.random.seed(0)
from mindspore import numpy as msnp
ms.set_context(device_target="GPU", mode=ms.GRAPH_MODE) @ms.jit
def U(x, mu=1.0, k=1.0):
return msnp.sum(0.5 * k * (x-mu) ** 2) x = ms.Tensor(np.ones(1000000000), ms.float32)
energy = U(x)
print (energy)

在本地环境下执行就会报错:

Traceback (most recent call last):
File "/home/dechin/projects/gitee/dechin/tests/test_ms.py", line 13, in <module>
energy = U(x)
File "/home/dechin/anaconda3/envs/mindspore-master/lib/python3.9/site-packages/mindspore/common/api.py", line 960, in staging_specialize
out = _MindsporeFunctionExecutor(func, hash_obj, dyn_args, process_obj, jit_config)(*args, **kwargs)
File "/home/dechin/anaconda3/envs/mindspore-master/lib/python3.9/site-packages/mindspore/common/api.py", line 188, in wrapper
results = fn(*arg, **kwargs)
File "/home/dechin/anaconda3/envs/mindspore-master/lib/python3.9/site-packages/mindspore/common/api.py", line 588, in __call__
output = self._graph_executor(tuple(new_inputs), phase)
RuntimeError:
----------------------------------------------------
- Memory not enough:
----------------------------------------------------
Device(id:0) memory isn't enough and alloc failed, kernel name: 0_Default/Sub-op0, alloc size: 4000000000B. ----------------------------------------------------
- C++ Call Stack: (For framework developers)
----------------------------------------------------
mindspore/ccsrc/runtime/graph_scheduler/graph_scheduler.cc:1066 Run

说明出现了内存不足的情况。通常情况下,可能需要手动做一个拆分,然后使用循环体遍历:

import time
import mindspore as ms
import numpy as np
from mindspore import numpy as msnp
ms.set_context(device_target="GPU", mode=ms.GRAPH_MODE) @ms.jit
def U(x, mu=1.0, k=1.0):
return msnp.sum(0.5 * k * (x-mu) ** 2) def f(x, N=1000, size=1000000):
ene = 0.
start_time = time.time()
for i in range(N):
x_tensor = ms.Tensor(x[i*size:(i+1)*size], ms.float32)
ene += U(x_tensor)
end_time = time.time()
print ("The calculation time cost is: {:.3f} s".format(end_time - start_time))
return ene.asnumpy() x = np.ones(1000000000)
energy = f(x)
print (energy)
# The calculation time cost is: 11.732 s
# 0.0

这里至少没有报内存错误了,因为每次只有在计算的时候我们才把相应的部分拷贝到显存中。接下来使用流计算,也就是边拷贝边计算的功能:

def f_stream(x, N=1000, size=1000000):
ene = 0.
s1 = ms.hal.Stream()
s2 = ms.hal.Stream()
start_time = time.time()
for i in range(N):
if i % 2 == 0:
with ms.hal.StreamCtx(s1):
x_tensor = ms.Tensor(x[i*size:(i+1)*size], ms.float32)
ene += U(x_tensor)
else:
with ms.hal.StreamCtx(s2):
x_tensor = ms.Tensor(x[i*size:(i+1)*size], ms.float32)
ene += U(x_tensor)
ms.hal.synchronize()
end_time = time.time()
print ("The calculation with stream time cost is: {:.3f} s".format(end_time - start_time))
return ene.asnumpy()

因为要考虑到程序编译对性能带来的影响,所以这里使用与不使用Stream的对比需要分开执行。经过多次测试之后,不使用Stream的运行时长大约为:

The calculation time cost is: 10.925 s
41666410.0

而使用Stream的运行时长大约为:

The calculation with stream time cost is: 9.929 s
41666410.0

就直观而言,Stream计算在MindSpore中有可能带来一定的加速效果,但其实这种加速效果相比于直接写CUDA Stream带来的效果增益其实要弱一些,可能跟编译的逻辑有关系。但至少现在有了Stream这样的一个工具可以在MindSpore中直接调用,就可以跟很多同类型的框架同步竞争了。

总结概要

接上一篇对于MindSpore-2.4-gpu版本的安装介绍,本文主要介绍一些MindSpore-2.4版本中的新特性,例如使用hal对设备和流进行管理,进而支持Stream流计算。另外还有类似于Jax中的fori_loop方法,MindSpore最新版本中也支持了ForiLoop循环体,使得循环的执行更加高效,也是端到端自动微分的强大利器之一。

版权声明

本文首发链接为:https://www.cnblogs.com/dechinphy/p/ms24.html

作者ID:DechinPhy

更多原著文章:https://www.cnblogs.com/dechinphy/

请博主喝咖啡:https://www.cnblogs.com/dechinphy/gallery/image/379634.html

MindSpore-2.4版本中的一些新特性的更多相关文章

  1. cocos3.2版本中的一些新特性

    1.设置屏幕分辨率的大小,需要手动添加: 2.去掉了所有CC开头的命名: 3.所有的单例(以前是采用shared开头方法),全部改为getInstance(); 4.cocos3.x以上的版本支持C+ ...

  2. MVC中的其他新特性

    MVC中的其他新特性 (GlobalImport全局导入功能) 默认新建立的MVC程序中,在Views目录下,新增加了一个_GlobalImport.cshtml文件和_ViewStart.cshtm ...

  3. xmake v2.1.5版本正式发布,大量新特性更新

    此版本带来了大量新特性更新,具体详见:xmake v2.1.5版本新特性介绍. 更多使用说明,请阅读:文档手册. 项目源码:Github, Gitee. 新特性 #83: 添加 add_csnippe ...

  4. Xcode中StoryBoard Reference 新特性的使用

    html,body,div,span,applet,object,iframe,h1,h2,h3,h4,h5,h6,p,blockquote,pre,a,abbr,acronym,address,bi ...

  5. 浅析Oracle 12c中Data Guard新特性

    浅析Oracle 12c中Data Guard新特性   写在前面 无论是做Oracle运维的小伙伴还是老伙伴,想必对Oracle数据库的数据级灾备核心技术—Data Guard是再熟悉不过了!这项从 ...

  6. ES6系列之项目中常用的新特性

    ES6系列之项目中常用的新特性 ES6常用特性 平时项目开发中灵活运用ES6+语法可以让开发者减少很多开发时间,提高工作效率.ES6版本提供了很多新的特性,接下来我列举项目中常用的ES6+的特性: l ...

  7. Jdk5.0中出现的新特性

    掌握jdk5.0中出现的新特性1.泛型(Generics)2.增强的"for"循环(Enhanced For loop)3.自动装箱/自动拆箱(Autoboxing/unboxin ...

  8. C#6.0 中的那些新特性

    C#6.0 中的那些新特性 前言 VS2015在自己机器上确实是装好了,费了老劲了,想来体验一下跨平台的快感,结果被微软狠狠的来了一棒子了,装好了还是没什么用,应该还需要装Xarmain插件,配置一些 ...

  9. iOS中的项目新特性页面的处理

    一般项目中都会出现新特性页面,比如第一次使用应用的时候,或者在应用设置里查看新特性的时候会出现. 这里,选择新建一个专门处理项目新特性的控制器,来完成功能. 首先是 NewFeaturesViewCo ...

  10. [译] OpenStack Kilo 版本中 Neutron 的新变化

    OpenStack Kilo 版本,OpenStack 这个开源项目的第11个版本,已经于2015年4月正式发布了.现在是个合适的时间来看看这个版本中Neutron到底发生了哪些变化了,以及引入了哪些 ...

随机推荐

  1. 简单理解.net 依赖注入的三种方式

    前言 :.NET5.0 于2020年11月10日正式发布,它是3.1之后的 .NET Core 的下一个主要版本.微软将这个新版本命名为 .NET 5.0 而不是 .NET Core 4.0,其原因有 ...

  2. 计算机二级c语言学习总结

    咱就是说,还有一周多久要进行计算机二级考试了,咱开始在b站上找一些视频进行学习.毕竟咱c语言实战经验自认为是完全足够应付计算机二级了,所以,咱现在的学习目标是先把计算机二级的大概知识过一遍,进行查漏补 ...

  3. Java并发之原子变量及CAS算法-下篇

    Java并发之原子变量及CAS算法-下篇 概述 本文主要讲在Java并发编程的时候,如果保证变量的原子性,在JDK提供的类中是怎么保证变量原子性的呢?.对应Java中的包是:java.util.con ...

  4. c++异步回调函数引用传递空指针异常

    c++异步回调函数引用传递空指针异常 问题描述 最近使用 c++ / qt 开发的一个桌面应用,运行到一处异步执行python脚本任务的方法处报错: 进程已结束,退出代码-1073741819 (0x ...

  5. 移动端Android跟ios兼容性问题,反人类!!!

    一.查询参数编码问题 我们在日常开发中,有时候会遇到拼接参数特别多的情况,那么就会导致一行代码特别长.那么为了美观呢,有的同学会进行换行处理,如下代码: 可以看到我红色框出来的地方就是经过了手动的回车 ...

  6. Opensack-T版脚本安装

    openStack-train 搭建部署 项目环境: 主机名 外网口(net) 内口(仅主机)s 配置 controller 192.168.220.10/192.168.220.1/24 192.1 ...

  7. 2023/11/16 NOIP 模拟赛

    T1 基于1的算术 标签 暴力枚举 思路1 赛时想了个假的 DP,只拿了 77 分,,, 小于 \(10^{15}\) 的仅由 \(1\) 组成的数只有 \(15\) 个,直接枚举即可. 想了一个做法 ...

  8. Azure 学习笔记

    选择 VM 配套 https://docs.azure.cn/zh-cn/virtual-machines/sizes  https://docs.azure.cn/zh-cn/virtual-mac ...

  9. 全面掌握 Jest:从零开始的测试指南(下篇)

    在上一篇测试指南中,我们介绍了Jest 的背景.如何初始化项目.常用的匹配器语法以及钩子函数的使用.这一篇篇将继续深入探讨 Jest 的高级特性,包括 Mock 函数.异步请求的处理.Mock 请求的 ...

  10. Python— 函数

    函数定义: 示例: # 求 1 - n 的和 def sum(date): sum = 0 for i in range(1,date + 1): sum += i return sum # 函数调用 ...