COJN 0486 800401反质数 呵呵呵呵呵
800401反质数 |
难度级别:A; 运行时间限制:1000ms; 运行空间限制:51200KB; 代码长度限制:2000000B |
试题描述
|
将正整数 x 的约数个数表示为 g(x)。例如,g(1)=1,g(4)=3, g(6)=4。 如果对于任意正整数y,当 0 < y < x 时,x 都满足 g(x) > g(y), 则称 x 为反质数。整数 1,2,4,6 等都是反质数。 现在任意给定两个正整数 M, N,其中,M < N <= 20000000,按从小到大输出其中(包括 M 和 N)的所有反质数。如果没有,则输出大写的NO。 |
输入
|
一行,包含两个正整数M和N,用单个空格隔开。
|
输出
|
在一行内输出所有反质数,以逗号间隔。如果没有,则输出 NO。
|
输入示例
|
1 13
|
输出示例
|
1,2,4,6,12
|
其他说明
|
|
题解:我非常想分享一下这道题的艰辛历程= =
首先:这还不好办?分块打表!结果发现它不是问数量。。。= =
那也可以呀?我们不分块直接打表不好嘛?
于是就有了下图,发现根本交不上去。。。= =
那那那。。。窝萌就把所有的反质数都打出来呗。。。。
结果。。。。。。。。。。。。。。。。。。。。。。
呵,呵,呵,呵,呵,呵,呵,呵,呵,呵,呵,呵,呵,呵,呵,呵,呵,呵,呵,呵,呵,呵,呵,呵,呵,呵,呵,呵,呵,呵,呵,呵,呵
呵,呵,呵,呵,呵,呵,呵,呵,呵,呵,呵,呵,呵,呵,呵,呵,呵,呵,呵,呵,呵,呵,呵,呵,呵,呵,呵,呵,呵,呵,呵,呵,呵
呵,呵,呵,呵,呵,呵,呵,呵,呵,呵,呵,呵,呵,呵,呵,呵,呵,呵,呵,呵,呵,呵,呵,呵,呵,呵,呵,呵,呵,呵,呵,呵,呵
呵,呵,呵,呵,呵,呵,呵,呵,呵,呵,呵,呵,呵,呵,呵,呵,呵,呵,呵,呵,呵,呵,呵,呵,呵,呵,呵,呵,呵,呵,呵,呵,呵
这个惨痛的教训告诉窝萌:打表,是一项技术活。。。。。。。。。。。。。。。。
。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。
。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。
。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。
。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。
附打表程序:
#include<iostream>
#include<cstdio>
#include<cmath>
#include<algorithm>
#include<queue>
#include<cstring>
#define PAU putchar(' ')
#define ENT putchar('\n')
using namespace std;
const int maxn=+,maxv=;
int a[maxn];bool b[maxn];
int cal(int x){
if(x==)return ;
int lim=(int)sqrt(x),ans=;
for(int i=;i<=lim;i++)if(x%i==)ans+=;
if(lim*lim==x)ans-=;return ans;
}
inline int read(){
int x=,sig=;char ch=getchar();
for(;!isdigit(ch);ch=getchar())if(ch=='-')sig=;
for(;isdigit(ch);ch=getchar())x=*x+ch-'';
return sig?x:-x;
}
inline void write(int x){
if(x==){putchar('');return;}if(x<)putchar('-'),x=-x;
int len=,buf[];while(x)buf[len++]=x%,x/=;
for(int i=len-;i>=;i--)putchar(buf[i]+'');return;
}
void init(){
freopen("b.txt","w",stdout);
for(int i=;i<=maxv;i++)a[i]=cal(i);int mx=;b[]=true;
for(int i=;i<=maxv;i++)if(mx<a[i])mx=a[i],b[i]=true;
int cnt=;
for(int i=;i<=maxv;i++){
if(b[i])a[cnt++]=i;
}
int tot=;
for(int i=;i<cnt;i++){
if(++tot==)tot=,ENT;
printf("p[%d]=%d;",i,a[i]);
}
return;
}
void work(){
return;
}
void print(){
return;
}
int main(){init();work();print();return ;}
AC代码。。。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<algorithm>
#include<queue>
#include<cstring>
#define PAU putchar(' ')
#define ENT putchar('\n')
using namespace std;
const int maxn=+;int p[maxn];
inline int read(){
int x=,sig=;char ch=getchar();
for(;!isdigit(ch);ch=getchar())if(ch=='-')sig=;
for(;isdigit(ch);ch=getchar())x=*x+ch-'';
return sig?x:-x;
}
inline void write(int x){
if(x==){putchar('');return;}if(x<)putchar('-'),x=-x;
int len=,buf[];while(x)buf[len++]=x%,x/=;
for(int i=len-;i>=;i--)putchar(buf[i]+'');return;
}
void init(){
p[]=;p[]=;p[]=;p[]=;p[]=;p[]=;p[]=;p[]=;p[]=;
p[]=;p[]=;p[]=;p[]=;p[]=;p[]=;p[]=;p[]=;p[]=;p[]=;
p[]=;p[]=;p[]=;p[]=;p[]=;p[]=;p[]=;p[]=;p[]=;p[]=;
p[]=;p[]=;p[]=;p[]=;p[]=;p[]=;p[]=;p[]=;p[]=;p[]=;
p[]=;p[]=;p[]=;p[]=;p[]=;p[]=;p[]=;p[]=;p[]=;p[]=;
p[]=;
return;
}
void work(){
int n=read(),m=read();bool flag=false;
for(int i=;i<;i++){
if(n<=p[i]&&p[i]<=m){
if(flag)putchar(',');
else flag=true;
write(p[i]);
}
}
if(!flag)puts("NO");
return;
}
void print(){
return;
}
int main(){init();work();print();return ;}
COJN 0486 800401反质数 呵呵呵呵呵的更多相关文章
- CNUOJ 0486 800401反质数
难度级别:A: 运行时间限制:1000ms: 运行空间限制:51200KB: 代码长度限制:2000000B 试题描述 将正整数 x 的约数个数表示为 g(x).例如,g(1)=1,g(4)=3, g ...
- 反质数问题,求不大于n的最大反质数
反质数:设f(n)表示n个约数的个数,如果对于任意x有0<x<n, f(x) < f(n),那么n就是一个反质数 我们都知道对于任意一个数n,都可以用质数乘积的形式表示出来:x = ...
- 反质数(Antiprimes)
转载http://www.cnblogs.com/tiankonguse/archive/2012/07/29/2613877.html 问题描述: 对于任何正整数x,起约数的个数记做g(x).例如g ...
- HYSBZ 1053 反质数
input n 1<=n<=2000000000 output 不大于n的最大反质数 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4.如果某个正整数x满足:g( ...
- bzoj:3085: 反质数加强版SAPGAP
Description 先解释一下SAPGAP=Super AntiPrime, Greatest AntiPrime(真不是网络流),于是你就应该知道本题是一个关于反质数(Antiprime)的问题 ...
- BZOJ1053 [HAOI2007]反素数 & BZOJ3085 反质数加强版SAPGAP
BZOJ 1053 Description 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4.如果某个正整数x满足:g(x)>g(i) 0<i<x ,则称x ...
- BZOJ 3085: 反质数加强版SAPGAP (反素数搜索)
题目链接:http://www.lydsy.com:808/JudgeOnline/problem.php?id=3085 题意:求n(<=10^100)之内最大的反素数. 思路: 优化2: i ...
- Emrips 反质数枚举 javascript实现
今天看到一个kata,提出一个"emirps"的概念:一个质数倒转后得到的是一个不同的质数,这个数叫做"emirps". 例如:13,17是质数,31,71也是 ...
- [BZOJ4857][JSOI2016]反质数序列[最大点独立集]
题意 在长度为 \(n\) 的序列 \(a\) 中选择尽量长的子序列,使得选出子序列中任意两个数的和不为质数. \(n\leq3000\ ,a_i\leq10^5\). 分析 直接按照奇偶性建立二分图 ...
随机推荐
- 关于这两天研究Java打印pdf方法的记录
这两天在研究Java调用打印机打印PDF文件的方法,学到了不少东西,特别来记录一下. 关于Java打印网上最多的而且也是Java正统的打印方法就是使用PrintService,一套比較标准的打印代码例 ...
- android下大文件分割上传
由于android自身的原因,对大文件(如影视频文件)的操作很容易造成OOM,即:Dalvik堆内存溢出,利用文件分割将大文件分割为小文件可以解决问题. 文件分割后分多次请求服务. //文件分割上传 ...
- 化繁为简,无需后端。巧用Yql+rss,搭建我的个人网站
[本文含有大量的心理描写,没耐心的看官直接跳转到末尾即可] 前言: 最近做好了个人网站.很多人都喜欢用WordPress弄一个自己的博客之类的,但其实我觉得没这个必要,Lofter的功能.界面神马的于 ...
- Linux基础系列—Linux体系结构和Linux内核结构
/** ****************************************************************************** * @author 暴走的小 ...
- centos 6+安装山逗斯骚尅特(本文内容来自都比更具帝)
系统支持:CentOS 6+,Debian 7+,Ubuntu 12+ 内存要求:≥128M 关于本脚本 一键安装 Shadowsocks-Python, ShadowsocksR, Shadowso ...
- 使用CSS、JS的几种方法
引用CSS到html网页里的4种方法 1.行内式 在标记的style属性中设定CSS样式,这种方式本质上没有体现出CSS的优势,因此不推荐使用 <div style="widt ...
- sharesdk 的使用
社交分享组件有很多 介绍一下sharesdk 的使用 官网:http://sharesdk.cn/ 1.先上效果图 2.主要代码: public class TestShare extends Act ...
- .NET aspx页面中的按钮无法响应事件
原因只有一个,页面中存在多个form标签.按Ctrl+F,找到多余的删掉即可
- 关于PHP导入项目的时候导入不了的情况
导入的时候,会发现明明是一个手动创建的一个项目, 才能导入, 有时候会发现这样导入不了的情况 那是因为,可能这个项目是手动创建的,如果通过IDE可能看不出来 不过如果你进入项目的根目录的时候就会知道 ...
- (转)phpmyadmin操作技巧:如何在phpmyadmin里面复制mysql数据库?
转之--http://blogunion.org/posts/copy-mysql-data-in-phpmyadmin.html 对于每一个站长而言,都会遇到要进行网站测试的时候.这个时候,往往需要 ...