每个数都可以分解成素数的乘积:

写成指数形式:n=p1^e1*p2^e2*...*pn^en;(p都是素数)

那么n的因数的数量m=(e1+1)*(e2+1)*...*(en+1);

所以用筛选法筛出1-n的各个素因数的数量;

然后容易得到n!的各个素因数的数量;

因为C(n,k)=n!/k!/(n-k)!;

所以接下来的事就容易办了.....

我的代码:

 #include<cstdio>
using namespace std;
int e[][],sum[][],n,num,kk;
bool prim[];
long long ans;
int main()
{
for(int i=; i<; i++)
{
if(!prim[i])
{
num++;
e[i][num]++;
for(int j=i<<; j<; j+=i)
{
prim[j]=;
e[j][num]=e[j/i][num]+;
}
}
}
for(int i=; i<; i++)
for(int k=; k<=num; k++)
sum[i][k]=sum[i-][k]+e[i][k];
while(scanf("%d%d",&n,&kk)!=EOF)
{
ans=;
for(int i=; i<=num; i++)
ans=ans*(sum[n][i]-sum[kk][i]-sum[n-kk][i]+); printf("%lld\n",ans);
}
return ;
}

POJ 2992 Divisors的更多相关文章

  1. poj 2992 Divisors (素数打表+阶乘因子求解)

    Divisors Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 9617   Accepted: 2821 Descript ...

  2. POJ 2992 Divisors (求因子个数)

    题意:给n和k,求组合C(n,k)的因子个数. 这道题,若一开始先预处理出C[i][j]的大小,再按普通方法枚举2~sqrt(C[i][j])来求解对应的因子个数,会TLE.所以得用别的方法. 在说方 ...

  3. poj 2992 Divisors 整数分解

    设m=C(n,k)=n!/((n-k)!*k!) 问题:求m的因数的个数 将m分解质因数得到 p1有a1个 p2有a2个 .... 因为每一个质因数能够取0~ai个(所有取0就是1,所有取ai就是m) ...

  4. Day7 - G - Divisors POJ - 2992

    Your task in this problem is to determine the number of divisors of Cnk. Just for fun -- or do you n ...

  5. A - Divisors POJ - 2992 (组合数C的因子数)数学—大数

    题意:就是求组合数C的因子的个数! 先说一下自己THL的算法,先把组合数求出来,然后将这个大数分解,得到各个素数的个数,再利用公式!用最快的大数分解算法 分析一下时间复杂度!   n1/4但是分析一下 ...

  6. poj 2992

    http://poj.org/problem?id=2992 大意:求(n,k)的因子个数 解题思路:(n,k) = n!/(k!(n-k)!)  任意一个数都可以用其质因子来表示  eg: 26 = ...

  7. POJ 2992 求组合数的因子个数

    求C(n,k)的因子个数 C(n,k) = (n*(n-1)*...*(n-k+1))/(1*2*...*k) = p1^k1 * p2^k2 * ... * pt^kt 这里只要计算出分子中素数因子 ...

  8. 从“n!末尾有多少个0”谈起

    在学习循环控制结构的时候,我们经常会看到这样一道例题或习题.问n!末尾有多少个0?POJ 1401就是这样的一道题. [例1]Factorial (POJ 1401). Description The ...

  9. 简单数论 | Day3 部分题解

    A - The Euler function 来源:HDU 2824 计算[a,b]区间内的整数的欧拉函数值,需要掌握单个欧拉函数和函数表的使用. #include <iostream> ...

随机推荐

  1. 开始C#之旅

    注释 /// <summary> /// 3.文档注释 /// </summary> private static void Test() { Console.WriteLin ...

  2. C++学习(五)

    一.拷贝构造函数和拷贝赋值运算符1.拷贝构造:用一个已有的对象,构造和它同类型的副本对象——克隆.2.形如class X {  X (const X& that) { ... }};的构造函数 ...

  3. 点击按钮弹出一个div层

    JQuery弹出层,点击按钮后弹出遮罩层,还有关闭按钮 <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml& ...

  4. JS操作CSS样式

    一.样式表(css) 使用样式表可以更好的显示WEB文档,也可以结合javascript从而实现很好的控制样式表. 样式(css)与内容(html): HTML是处理文档结构的,HTML可以实现如何把 ...

  5. Android应用Icon大小在不同分辨率下定义

    http://www.ard9.com/gsjj/204.html 对于Android平台来说,不同分辨率下Icon的大小设计有着不同的要求,对于目前主流的 HDPI即WVGA级别来说,通常hdpi的 ...

  6. com.android.builder.packaging.DuplicateFile

    解决方法:     packagingOptions {        exclude 'META-INF/DEPENDENCIES'        exclude 'META-INF/NOTICE' ...

  7. 关于ibatis进行物理游标分页

    http://www.iteye.com/topic/136712 详细demo:参照http://www.kusoft.net 我的数据库是采用mssql2000 采用分页必定数据量比较大: 按照i ...

  8. IP-MAC绑定导致网络故障

    前段时间将一台服务器A的服务迁移至了另外一台服务器B,外网IP地址也顺带迁移过来了,结果网络出现了问题. 其中内网是畅通的,但是外网IP怎么都连不上另外一台路由C(B和C是在一个交换机下的,网段也相同 ...

  9. 小技巧之指定refer

    在当前页面A的控制台输入window.location.href='要跳去的页面B',B页面的refer即为A页面.

  10. 类库探源——System.Configuration 配置信息处理

    按照MSDN描述 System.Configuration 命名空间 包含处理配置信息的类型 本篇文章主要两方面的内容 1. 如何使用ConfigurationManager 读取AppSetting ...