题目链接

题意:

  一副牌, 每个花色13张牌,加上大小王,共54张。

  遇到大小王可以代替其中某种花色。

  给定C, D, H, S。

  每次抽一张牌, 问抽到C张梅花, D张方块, H张红桃, S张黑桃所需要的最小次数的期望。

思路:

  用dp[c][d][h][s][staues]表示当前有c张梅花,d张方块,h张红桃,s张黑桃,大小王的状态为staues时, 达到目标所需要的期望。

  staues 用余三法进行状压, 因为大小王有两张, 变成某种花色的牌的数目就可能是0,1,2。

  四种花色, 也就是2 * 1 + 2 * 3 + 2 * 9 + 2 * 27 = 80种状态。

  再分情况考虑, 用dfs进行求解。

代码:

  

 #include <cmath>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <ctime>
#include <set>
#include <map>
#include <list>
#include <queue>
#include <string>
#include <vector>
#include <fstream>
#include <iterator>
#include <iostream>
#include <algorithm>
using namespace std;
#define LL long long
#define INF 0x3f3f3f3f
#define MOD 1000000007
#define eps 1e-6
#define MAXN 16
#define MAXM 82
#define dd cout<<"debug"<<endl
#define p(x) printf("%d\n", x)
#define pd(x) printf("%.7lf\n", x)
#define k(x) printf("Case %d: ", ++x)
#define s(x) scanf("%d", &x)
#define sd(x) scanf("%lf", &x)
#define mes(x, d) memset(x, d, sizeof(x))
#define do(i, x) for(i = 0; i < x; i ++)
int C, D, H, S;
double dp[MAXN][MAXN][MAXN][MAXN][MAXM];
void init()
{
int i, j, k, m, l;
do(i, MAXN)
do(j, MAXN)
do(k, MAXN)
do(m, MAXN)
do(l, MAXM)
dp[i][j][k][m][l] = -1.0;
}
bool is_ok(int c, int d, int h, int s, int j)
{
int bit[] = {, , , };
int cnt = ;
while(j)
{
bit[cnt ++] = j % ;
j /= ;
}
c += bit[];
d += bit[];
h += bit[];
s += bit[];
if(c >= C && d >= D && h >= H && s >= S)
return true;
return false;
}
double dfs(int c, int d, int h, int s, int j)
{
double &res = dp[c][d][h][s][j];
if(res != -1.0)
return res;
if(is_ok(c, d, h, s, j))
return res = 0.0;
res = 0.0;
int bit[] = {, , , };
int num = ;
int jj = j;
for(int i = ; i < ; i ++)
{
bit[i] = j % ;
j /= ;
num += bit[i];
}
int sum = - (c + d + h + s + num);
if(c < && sum)
{
double p = ( - c) * 1.0 / sum;
res += (dfs(c + , d, h, s, jj) + ) * p;
}
if(d < && sum)
{
double p = ( - d) * 1.0 / sum;
res += (dfs(c, d + , h, s, jj) + ) * p;
}
if(h < && sum)
{
double p = ( - h) * 1.0 / sum;
res += (dfs(c, d, h + , s, jj) + ) * p;
}
if(s < && sum)
{
double p = ( - s) * 1.0 / sum;
res += (dfs(c, d, h, s + , jj) + ) * p;
}
if(num < && sum)
{
double p = ( - num) * 1.0 / sum;
int cnt = bit[] + + bit[] * + bit[] * + bit[] * ;
double temp = dfs(c, d, h, s, cnt); cnt = bit[] + (bit[] + ) * + bit[] * + bit[] * ;
temp = min(temp, dfs(c, d, h, s, cnt)); cnt = bit[] + bit[] * + (bit[] + ) * + bit[] * ;
temp = min(temp, dfs(c, d, h, s, cnt)); cnt = bit[] + bit[] * + bit[] * + (bit[] + ) * ;
temp = min(temp, dfs(c, d, h, s, cnt)); res += (temp + 1.0) * p;
}
return res;
} int main()
{
int T;
int kcase = ;
scanf("%d", &T);
while(T --)
{
scanf("%d %d %d %d", &C, &D, &H, &S);
int x = ;
init();
x = (C > ? C - : ) + (D > ? D - : ) + (H > ? H - : ) + (S > ? S - : );
if(x > )
printf("Case %d: -1\n", ++ kcase);
else
{
double ans = dfs(, , , , );
printf("Case %d: %.7lf\n", ++ kcase, ans);
}
}
return ;
}

LightOj_1364 Expected Cards的更多相关文章

  1. Light OJ 1364 Expected Cards (期望dp,好题)

    题目自己看吧,不想赘述. 参考链接:http://www.cnblogs.com/jianglangcaijin/archive/2013/01/02/2842389.html #include &l ...

  2. KUANGBIN带你飞

    KUANGBIN带你飞 全专题整理 https://www.cnblogs.com/slzk/articles/7402292.html 专题一 简单搜索 POJ 1321 棋盘问题    //201 ...

  3. [kuangbin带你飞]专题1-23题目清单总结

    [kuangbin带你飞]专题1-23 专题一 简单搜索 POJ 1321 棋盘问题POJ 2251 Dungeon MasterPOJ 3278 Catch That CowPOJ 3279 Fli ...

  4. ACM--[kuangbin带你飞]--专题1-23

    专题一 简单搜索 POJ 1321 棋盘问题POJ 2251 Dungeon MasterPOJ 3278 Catch That CowPOJ 3279 FliptilePOJ 1426 Find T ...

  5. Throwing cards away I

    Throwing cards away I   Given is an ordered deck of n cards numbered 1 to n with card 1 at the top a ...

  6. UVa 10935 - Throwing cards away I (队列问题)

    原题 Throwing cards away I   Given is an ordered deck of n cards numbered 1 to n with card 1 at the to ...

  7. uva 10935 throwing cards away <queue>

    Given is an ordered deck of    n    cards numbered 1 to    n    with card 1 at the top and card    n ...

  8. UVa---------10935(Throwing cards away I)

    题目: Problem B: Throwing cards away I Given is an ordered deck of n cards numbered 1 to n with card 1 ...

  9. Throwing cards away I uva1594

     Throwing cards away I Given is an ordered deck of  n  cards numbered 1 to n  with card 1 at the t ...

随机推荐

  1. .NET技术-.NET各大网站-编程技术网址

    Source Code: http://www.codeproject.com/ The Code Projecthttp://www.tomore.com/ 中 国盟动力http://www.cod ...

  2. 适用于cocos2dx的编辑器:Texture,Tilemap,Particle,Action,Level etc

    原文:http://www.cocos2d-x.org/wiki/Editors_for_cocos2d-x_TextureTilemapParticleActionLevel_etc Action ...

  3. android 程序打开第三方程序

    因为在开发过程中需要开启扫描第三方程序,并且点击启动的效果,所以对这个功能进行了实现,并且分享出来个大家. 之前看到网上说需要获取包名和类名,然后通过  intent 才能打开这个程序,其实不必要这样 ...

  4. 在windows C++中编译并使用Lua脚本

    早前就用过LUA ,只是局部的小项目使用,突然兴起想要写一些关于LUA 的  文章,记录曾经学习过的点点滴滴. 这里我使用的是LUA5.2作为 案例 lua做为轻量级脚本语言已经被广泛应用到应用软件以 ...

  5. Spring MVC 3.0.5+Spring 3.0.5+MyBatis3.0.4全注解实例详解(四)

    这一章大象将详细分析web层代码,以及使用Spring MVC的注解及其用法和其它相关知识来实现控制器功能.     之前在使用Struts2实现MVC的注解时,是借助struts2-conventi ...

  6. iOS CocoaPods自动管理第三方开源库

    最近在开发中发现在项目中使用了好多第三方库,然而第三方更新的时候本地却不能及时更新.然而CocoaPods则可以管理第三方依赖包的更新,这些“体力活”会被节省好多时间,下面介绍一下CocoaPods的 ...

  7. setValue 和 setObject 的区别

    在使用NSMutableDictionary 的时候经常会使用setValue forKey 与 setObject forKey,他们经常是可以交互使用的. 1.setValue forKey的定义 ...

  8. 转:XMLP报表导出为excel时设置文本不自动转为数字

    转自:http://yedward.net/?id=337 对于这个问题,只要在RTF模版中设置下强制LTR即可,设置方法如下: 图1:勾选强制LTR 也可以自己输入下面的代码: <fo:bid ...

  9. java Spring bean作用域

    1. Singleton作用域 当一个bean的作用域为singleton, 那么Spring IoC容器中只会存在一个共享的bean实例,并且所有对bean的请求,只要id与该bean定义相匹配,则 ...

  10. web开发第一周

    第一天:HTML基础内容. 超文本标记语言,Hyper Text Makeup Language. 列表(清单),表格,框架,和表单,四个方法还不是很熟练. 列表,list,分OL和UL,表格的每个单 ...