根据前文的例子http://blog.csdn.net/wolf96/article/details/44172243(不弄超链接了审核太慢)弄一下真正的基于物理的渲染
逃了节课= =,弄了一下。
公式和之前的文章一样,这次加上cubeMap贴图,由于方便,就直接用surface shader了,因为不用求reflect方向,
之前也有这一篇文章说明surface shader中cubeMap的使用方法和实时反射的方法http://blog.csdn.net/wolf96/article/details/41939325
好了进入正题,前面提到了ops2的brdf方法,现在来看看ops2改进了的BRDF方法
 

这是他们给出的代码,求的是F(L,H)函数的值,其中g为gloss光泽度,NoV为NdotV,N、V等等的含义在前篇文章也讲过,rf0我们就让他为可控的外部变量。

复习一下Cook-Torrance光照模型求specular的方法
可以简单概括为这个公式
 
本次计算沿用上次方法,
 

改用specular power变量_SP为gloss光泽度为本篇定义外部变量_GL控制,具体装换方法_SP = pow(8192,
_GL)也就是specular power值为8192的gloss倍,借用8192这个已经调好的参数,也算是站在巨人的肩膀上了。

Ops2的开发人员称他们的brdf为Environment map pre-filtering
模拟了环境光照射
原文说明the environment map blurs much more linearly across the gloss range
Gloss的范围使环境贴图的模糊更加的的线性,接下来的例子我们就可以看到结果

首先我们定义出光照函数,具体算法与前篇相同不在此赘述。只是把F(L,H)函数BRDF改成上面经过改进的方法,代码如下:

		inline fixed4 LightingOps(SurfaceOps s, fixed3 lightDir, fixed3 viewDir, fixed atten)
{
viewDir = normalize(viewDir);
lightDir = normalize(lightDir);
float3 H = normalize(lightDir + viewDir);
s.Normal = normalize(s.Normal);
float3 N = s.Normal; float _SP = pow(8192, _GL);
float d = (_SP + 2) / (8 * PIE) * pow(dot(N, H), _SP);
// float f = _SC + (1 - _SC)*pow((1 - dot(H, lightDir)), 5);
float f = EnvironmentBRDF(_GL, dot(N, viewDir), _R0F);
float k = 2 / sqrt(PIE * (_SP + 2));
float v = 1 / ((dot(N, lightDir)*(1 - k) + k)*(dot(N, viewDir)*(1 - k) + k)); float spec = d*f*v; float4 c = float4(s.Albedo, 1);
c.rgb += (_SC + (1.0 - _SC) * s.DeferredFresnel) * spec;//* light.rgb;
c += spec*_SC; c.a = s.Alpha;
return c;
}

在surf函数中我们要解码cubeMap传值给light函数,再此注意,我们用的不是texCUBE而是
texCUBElod,看了函数名就知道不仅解出颜色,而且也控制lod,lod为level of
detail,细节程度,我们通过控制他的第二个参数的w值来控制细节,通过这个我们能改变他的粗糙度,这也是基于物理的渲染的灵魂所在,我们要使光泽度
gloss越低越粗糙。我们定义一个外部变量_nMips来控制,从而调试成我们想要的效果。
在surf函数中也需要计算BRDF,为了控制light中的specular比重,使之更加真实

		void surf(Input IN, inout SurfaceOps o) {
half4 c = tex2D(_MainTex, IN.uv_MainTex) * _MainTint; o.Emission = texCUBElod(_Cubemap, float4(IN.worldRefl, _nMips - _GL*_nMips)).rgb * _ReflAmount; float cosT = dot(IN.viewDir, IN.worldNormal); // c = (1 - spec)* c; float F = EnvironmentBRDF(_GL, dot(IN.worldNormal, IN.viewDir), _R0F);
o.DeferredFresnel = F;
o.Albedo = c.rgb;
o.Alpha = c.a;
}

效果如下:

 
我又做了各种实验,根据前篇改变了NDF函数
这是phong分布函数
 
Beckmann分布函数,他们都不一样,仔细比对就会发现Beckmann的高光比较强,比较突兀
 
Torrance-Reitz(GXX)分布函数
 
结果发现ops2的效果还是最好的,其次是Torrance-Reitz
再来个全家福

给出ops2的全部代码,其它的根据前篇代码带入更改即可

Shader "Custom/surface_cube_new ops" {
Properties{
_MainTex("Base (RGB)", 2D) = "white" {}
_MainTint("Diffuse Color", Color) = (1, 1, 1, 1)
_Cubemap("CubeMap", CUBE) = ""{}
_ReflAmount("Reflection Amount", Range(0.01, 1)) = 0.5
_SC("Specular Color", Color) = (1, 1, 1, 1)
_GL("gloss", Range(0, 1)) = 0.5
_R0F("R0F", Range(0, 1)) = 0.5
_nMips("nMipsF", Range(0, 5)) = 0.5
}
SubShader{
Tags{ "RenderType" = "Opaque" }
LOD 400 CGPROGRAM
#pragma surface surf Ops noambient
#pragma glsl
#pragma target 3.0
sampler2D _MainTex;
samplerCUBE _Cubemap;
float4 _MainTint;
float _ReflAmount;
float4 _SC;
float _nMips;
float _GL;
float _R0F;
struct SurfaceOps
{
fixed3 Albedo;
fixed3 Normal;
fixed3 Emission;
fixed3 Specular;
fixed Gloss;
fixed Alpha;
half DeferredFresnel;
}; struct Input
{
float2 uv_MainTex;
float3 worldPos;
float3 viewDir;
float3 worldNormal;
float3 worldRefl;////worldRefl:即为世界空间的反射向量///内置的worldRefl 来做立方图反射(cubemap reflection)
};
#define PIE 3.1415926535
#define E 2.71828
float3 EnvironmentBRDF(float g, float NoV, float3 rf0)
{
float4 t = float4(1 / 0.96, 0.475, (0.0275 - 0.25 * 0.04) / 0.96, 0.25);
t *= float4(g, g, g, g);
t += float4(0, 0, (0.015 - 0.75 * 0.04) / 0.96, 0.75); float a0 = t.x * min(t.y, exp2(-9.28 * NoV)) + t.z;
float a1 = t.w;
return saturate(a0 + rf0 * (a1 - a0));
}
inline fixed4 LightingOps(SurfaceOps s, fixed3 lightDir, fixed3 viewDir, fixed atten)
{
viewDir = normalize(viewDir);
lightDir = normalize(lightDir);
float3 H = normalize(lightDir + viewDir);
s.Normal = normalize(s.Normal);
float3 N = s.Normal; float _SP = pow(8192, _GL);
float d = (_SP + 2) / (8 * PIE) * pow(dot(N, H), _SP);
// float f = _SC + (1 - _SC)*pow((1 - dot(H, lightDir)), 5);
float f = EnvironmentBRDF(_GL, dot(N, viewDir), _R0F);
float k = 2 / sqrt(PIE * (_SP + 2));
float v = 1 / ((dot(N, lightDir)*(1 - k) + k)*(dot(N, viewDir)*(1 - k) + k)); float spec = d*f*v; float4 c = float4(s.Albedo, 1);
c.rgb += (_SC + (1.0 - _SC) * s.DeferredFresnel) * spec;//* light.rgb;
c += spec*_SC; c.a = s.Alpha;
return c;
} void surf(Input IN, inout SurfaceOps o) {
half4 c = tex2D(_MainTex, IN.uv_MainTex) * _MainTint; o.Emission = texCUBElod(_Cubemap, float4(IN.worldRefl, _nMips - _GL*_nMips)).rgb * _ReflAmount; float cosT = dot(IN.viewDir, IN.worldNormal); // c = (1 - spec)* c; float F = EnvironmentBRDF(_GL, dot(IN.worldNormal, IN.viewDir), _R0F);
o.DeferredFresnel = F;
o.Albedo = c.rgb;
o.Alpha = c.a;
}
ENDCG
}
FallBack "Diffuse"
}

                                                            ----by wolf96

Unity3d 基于物理渲染Physically-Based Rendering之实现的更多相关文章

  1. Unity3d 基于物理渲染Physically-Based Rendering之最终篇

    前情提要: 讲求基本算法 Unity3d 基于物理渲染Physically-Based Rendering之specular BRDF plus篇 Unity3d 基于物理渲染Physically-B ...

  2. unity3d 基于物理渲染的问题解决

    最近1个月做了unity 次世代开发的一些程序方面的支持工作,当然也是基于物理渲染相关的,主要还是skyshop marmoset的使用吧,他算是unity4.x版本 PBR的优秀方案之一了但在使用以 ...

  3. PBR:基于物理的渲染(Physically Based Rendering)+理论相关

    一: 关于能量守恒 出射光线的能量永远不能超过入射光线的能量(发光面除外).如图示我们可以看到,随着粗糙度的上升镜面反射区域的会增加,但是镜面反射的亮度却会下降.如果不管反射轮廓的大小而让每个像素的镜 ...

  4. Unity3d 基于物理渲染Physically-Based Rendering之specular BRDF

    在实时渲染中Physically-Based Rendering(PBR)中文为基于物理的渲染它能为渲染的物体带来更真实的效果,而且能量守恒 稍微解释一下字母的意思,为对后文的理解有帮助,从右到左L为 ...

  5. 基于物理渲染的渲染器Tiberius计划

    既然决定实现一个光栅化软件渲染器,我又萌生了一个念头:实现一个基于物理渲染的渲染器.

  6. Physically Based Rendering

    Microfacet Models for Refraction through Rough Surfaces 这篇论文...名字被我忘记了 找了好久...之前存电脑里的 ggx beckmann 找 ...

  7. Thinking in Unity3D:基于物理着色(PBS)的材质系统

    关于<Thinking in Unity3D> 笔者在研究和使用Unity3D的过程中,获得了一些Unity3D方面的信息,同时也感叹Unity3D设计之精妙.不得不说,笔者最近几年的引擎 ...

  8. Physically Based Render in Game 序

    基于物理渲的渲染理论,从SIGGRAPH06被Naty Hoffman等人提出后,近年来也越来越多的被各大游戏公司所采用,几乎已经是次世代游戏的标准特性,也是每个3D游戏工作者所必备的知识,尽管每年S ...

  9. Physically Based Shader Development for Unity 2017 Develop Custom Lighting Systems (Claudia Doppioslash 著)

    http://www.doppioslash.com/ https://github.com/Apress/physically-based-shader-dev-for-unity-2017 Par ...

随机推荐

  1. win7 iis7.5 配置错误解决办法

    win7 iis7.5 配置HTTP 错误 404.3 在初次使用IIS7的时候经常遇到的一个错误解决办法1: 找到Visual Studio命令提示工具,运行aspnet_regiis.exe -i ...

  2. javascript创建对象(一)

    对象定义:无序属性的集合,属性包含基本值.对象.函数,相当于一组没有特定顺序的值.    创建自定义对象最简单的方式就是: var movie=new Object(); movie.name=&qu ...

  3. strace跟踪操作的详细内容

  4. 【转】NHibernate入门教程

    开源框架完美组合之Spring.NET + NHibernate + ASP.NET MVC + jQuery + easyUI 中英文双语言小型企业网站Demo 摘要: 热衷于开源框架探索的我发现A ...

  5. HDU_1241 Oil Deposits(DFS深搜)

    Problem Description The GeoSurvComp geologic survey company is responsible for detecting underground ...

  6. 一天学完UFLDL

    学习UFLDL笔记 第一节 神经网络 神经元长这样 大写W看着有点不习惯.. 激活函数, 就是上面式子中的f. 可以选 sigmoid函数(或者叫 logistic回归,对数几率函数),反正就是这样一 ...

  7. matlab结构体形式保存数据生成.mat文件< 转>

    2015年 参加天池大数据竞赛     为了建立模型,打算基于matlab使用Random Forest Algorithm的工具包 该工具包我在此分享给大家,http://yunpan.cn/cVX ...

  8. Best Time to Buy and Sell Stock III 解题思路

    题目要求: 最多交易两次,并且只能买卖完之后再买. 总思路: 在数组中找一个适当的点i,使得i左右两边profit之和最大. 思路: 1.从左往右扫描,left[i]记录包括i元素以内的左部的maxp ...

  9. Windows下的 mysql 5.5主从同步配置

    环境说明:   Master:127.0.0.1 3306 Slave:127.0.0.1 3307     MySQL 的 Master 配置:   配置my.ini:   [mysqld]   # ...

  10. 纯JS写出日历

    封装代码: (function(cmf){ cmf.showDcalendar=function(){ var fnname=cmf.fn var id="cmfrili2" va ...