题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=30726

【思路】

强连通分量+动归。

求scc后缩点,以scc中的节点数作为权值,则问题转化为求一个DAG上的最大权路径,可以用dp求解。

【代码】

 #include<cstdio>
#include<stack>
#include<vector>
#include<cstring>
#include<iostream>
using namespace std; const int maxn = +;
const int maxm = +; int pre[maxn],lowlink[maxn],sccno[maxn],dfs_clock,scc_cnt;
vector<int> G[maxn];
stack<int> S; int dfs(int u) {
pre[u]=lowlink[u]=++dfs_clock;
S.push(u);
for(int i=;i<G[u].size();i++) {
int v=G[u][i];
if(!pre[v]) {
dfs(v);
lowlink[u]=min(lowlink[u],lowlink[v]);
}
else if(!sccno[v]) {
lowlink[u]=min(lowlink[u],pre[v]);
}
}
if(lowlink[u]==pre[u]) {
scc_cnt++;
for(;;) {
int x=S.top(); S.pop();
sccno[x]=scc_cnt;
if(x==u) break;
}
}
}
void find_scc(int n) {
memset(pre,,sizeof(pre));
memset(sccno,,sizeof(sccno));
scc_cnt=dfs_clock=;
for(int i=;i<n;i++)
if(!pre[i]) dfs(i);
} int T,n,m;
int val[maxn];
struct Edge{ int u,v,next; } e[maxm];
int en,front[maxm];
void AddEdge(int u,int v) {
en++; e[en].u=u,e[en].v=v; e[en].next=front[u],front[u]=en;
} int d[maxn];
int dp(int u) {
int& ans=d[u];
if(ans) return ans;
ans=;
for(int i=front[u];i>=;i=e[i].next) {
int v=e[i].v;
ans=max(ans,dp(v));
}
ans+=val[u];
return ans;
}
void init() {
en=-;
memset(front,-,sizeof(front));
memset(val,,sizeof(val));
memset(d,,sizeof(d));
for(int i=;i<=n;i++) G[i].clear();
}
int main() {
scanf("%d",&T);
while(T--) {
scanf("%d%d",&n,&m);
init();
int u,v;
for(int i=;i<m;i++) {
scanf("%d%d",&u,&v);
u--,v--;
G[u].push_back(v);
}
find_scc(n);
for(int i=;i<n;i++) {
val[sccno[i]]++;
for(int j=;j<G[i].size();j++) {
int v=G[i][j];
if(sccno[i]!=sccno[v]) AddEdge(sccno[i],sccno[v]);
}
}
int ans=;
for(int i=;i<=scc_cnt;i++) ans=max(ans,dp(i));
printf("%d\n",ans);
}
return ;
}

ps:实测该题vector数组式存边较自写邻接表快

UVAlive11324 The Largest Clique(scc+dp)的更多相关文章

  1. UVA-11324 The Largest Clique (强连通+DP)

    题目大意:在一张无向图中,最大的节点集使得集合内任意两个节点都能到达对方. 题目分析:找出所有的强连通分量,将每一个分量视作大节点,则原图变成了一张DAG.将每个分量中的节点个数作为节点权值,题目便转 ...

  2. 【UVA11324】The Largest Clique (SCC)

    题意: 给一张有向图G,求一个结点数最大的结点集,使得该结点中任意两个结点 u 和 v满足:要么 u 可以到达 v, 要么 v 可以到达 u(u 和 v 相互可达也可以). 分析: Tarjan求SC ...

  3. bzoj 1093 [ZJOI2007]最大半连通子图(scc+DP)

    1093: [ZJOI2007]最大半连通子图 Time Limit: 30 Sec  Memory Limit: 162 MBSubmit: 2286  Solved: 897[Submit][St ...

  4. ACdreamOJ 1154 Lowbit Sum (数字dp)

    ACdreamOJ 1154 Lowbit Sum (数位dp) ACM 题目地址:pid=1154" target="_blank" style="color ...

  5. 「SDOI2016」储能表(数位dp)

    「SDOI2016」储能表(数位dp) 神仙数位 \(dp\) 系列 可能我做题做得少 \(QAQ\) \(f[i][0/1][0/1][0/1]\) 表示第 \(i\) 位 \(n\) 是否到达上界 ...

  6. 【HDU1693】Eat the Trees(插头dp)

    [HDU1693]Eat the Trees(插头dp) 题面 HDU Vjudge 大概就是网格图上有些点不能走,现在要找到若干条不相交的哈密顿回路使得所有格子都恰好被走过一遍. 题解 这题的弱化版 ...

  7. 【BZOJ1814】Ural 1519 Formula 1 (插头dp)

    [BZOJ1814]Ural 1519 Formula 1 (插头dp) 题面 BZOJ Vjudge 题解 戳这里 上面那个链接里面写的非常好啦. 然后说几个点吧. 首先是关于为什么只需要考虑三进制 ...

  8. 【BZOJ4712】洪水(动态dp)

    [BZOJ4712]洪水(动态dp) 题面 BZOJ 然而是权限题QwQ,所以粘过来算了. Description 小A走到一个山脚下,准备给自己造一个小屋.这时候,小A的朋友(op,又叫管理员)打开 ...

  9. 【HDU 5647】DZY Loves Connecting(树DP)

    pid=5647">[HDU 5647]DZY Loves Connecting(树DP) DZY Loves Connecting Time Limit: 4000/2000 MS ...

随机推荐

  1. TCP 连接的要点

    概念 TIME_WAIT: socket 仍然有数据在内核中待发送直到发送成功或超时,此socket不能被内核删除,同时等待是否要重传Ack对端还已发过来的FIN Linger Time:socket ...

  2. Python自动化之5种session类型

    Django中默认支持Session,其内部提供了5种类型的Session供开发者使用: 数据库(默认) 缓存 文件 缓存+数据库 加密cookie 1.数据库Session Django默认支持Se ...

  3. HUD3336

    /* 巧妙地使用fail数组 根据fail数组的定义 fail[i] 有 长度为i的子串最长公共前后缀为fail[i] 比如样例 fail 0 0 1 2 那么我们维护一个ans[i]表示到i位置的时 ...

  4. OD: RPC - MS06040 & MS08067

    RPC 漏洞简介 Remote Procedure Call,分布式计算中常用到的技术.两台计算机通信过程可以分为两种形式:一种是数据的交换,另一种是进程间通信.RPC 属于进程间通信. RPC 就是 ...

  5. Mac下Sublime快捷键

    由于自己笔记本是mac,造成window与mac中sublime快捷键不同,现在稍微整理下常用的方便于记忆: 1.control+alt+enter 打开Emmet(Zencoding) 2.supe ...

  6. (转)PHP中的ob_start用法详解

    用PHP的ob_start();控制您的浏览器cache Output Control 函数可以让你自由控制脚本中数据的输出.它非常地有用,特别是对于:当你想在数据已经输出后,再输出文件头的情况.输出 ...

  7. Lock锁_线程_线程域

    using System;using System.Collections.Generic;using System.ComponentModel;using System.Data;using Sy ...

  8. centos 6.X 安装输入法

    1.打开终端 su 输入 密码 yum install "@Chinese Support" 2.接下来是启用中文输入法的操作 系统 ->首选项 ->输入法 3.在弹出 ...

  9. MyBatis学习笔记(2)——缓存

    一级缓存:基于PerpetualCache的HashMap本地缓存,其存储作用域为Session,当Session flush或 close之后,该Session 中的所有Cache将被清空 二级缓存 ...

  10. MyBatis学习笔记(1) —— 基础知识

    mybatis 是支持普通SQL查询,存储过程和高级映射的优秀持久层框架,mybatis 清除了几乎所有的jdbc代码和参数的手工设置及对结果集的检索封装.mybatis可以使用简单的xml和注解用于 ...