今天早上你谷崩了

由于脑子抽筋,所以选了一道数学题来做。做着做着就疯了

传送

窝盟先画张图冷静冷静

这是样例的图,其中蓝点是有学生的地方。

窝盟来看一下那些学生可以被C君看到。

假设这张图是一个坐标系,C君在(0,0)。

C君可以看到的学生:(1,0),(0,1),(1,1),(1,2),(2,1),(1,3),(3,1),(2,3),(3,2)

我们画下来(下图中红点是可以看到的学生)

我们发现红点的横纵坐标的最大公约数都是1,且所有红点关于y=x对称。

所以我们可以求出来一半的红点,再*2-1(因为(1,1)关于y=x对称后还是(1,1),所以要-1)

我们再看一下数据范围:

显然O(n2)枚举横纵坐标会TLE。

我们发现对于合法的点(i,j)来说,gcd(i,j)=1,也就是说i与j互质。所以我们要找出所有符合(i,j)互质的二元组(i,j)。

仔细思考,想起有一个神奇的函数,叫欧拉函数。φ(n)是求从1到n-1中,有多少个与n互质的数。

为了不重复,不少求符合条件的(i,j),我们求出1到n-1这些数的φ,然后乘2.

似乎少求了什么东西。是什么呢?是什么呢?是什么呢?

我们好像忽略了(1,0)和(0,1)这两个点,还把(1,1)算了两遍

那就在当前答案上直接+1好了

怎么快速求φ?

我们先看几个式子:

若n,m互质,φ(nm)=φ(n)φ(m)

p为质数,φ(p)=p-1;

通向公式:φ(n)=n(1-1/p1)(1-1/p2).....(1-1/pk)  (其中p1,p2...pk为n的所有质因子)

所以φ(n)=n/pi*(pi-1) (1<=i<=k)

以下是求φ的代码:

int phi(int k)
{
if(k==)return ;
if(!no[k])return k-;
cn=;
int p=k,h=k;
for(int i=;i*i<=k;i++)
{
if(h%i==)
{
p=p/i*(i-);//上面的推导
h/=i;
while(h%i==)
h/=i;//我们只用到不同的质因数
} }
if(h>) p=p/h*(h-);//如果此时的h是最后一个质因数,还要更新p
return p;
}

但是有一个特殊情况:n=1。

按照我们的思路,最后答案会是1,因为在n≠1时,加上了(1,0),(0,1),减去了多余的(1,1),所以答案+1,但是当n=1时,只有C君,没有学生,所以答案是0.

本题代码

#include<iostream>
#include<cstdio>
#include<queue>
#include<cstring>
#define ll long long
using namespace std;
int n,pre[],cnt,all,cn,ys[];
bool no[];
int read()
{
char ch=getchar();
int x=;bool f;
while(ch<''||ch>'')
{
if(ch=='-')f=;
ch=getchar();
}
while(ch>=''&&ch<='')
{
x=(x<<)+(x<<)+(ch^);
ch=getchar();
}
return f?-x:x;
}
int phi(int k)
{
if(k==)return ;
if(!no[k])return k-;
cn=;
int p=k,h=k;
for(int i=;i*i<=k;i++)
{
if(h%i==)
{
p=p/i*(i-);
h/=i;
while(h%i==)
h/=i;
} }
if(h>) p=p/h*(h-);
return p;
}
int main()
{
n=read();
if(n==)//注意特判
{
printf("");return ;
}
all=;
for(int i=;i<=n;i++)
{
if(!no[i])
pre[++cnt]=i;
for(int j=;j<=cnt;j++)
{
if(i*pre[j]>n)break;
no[i*pre[j]]=;
if(i%pre[j]==)
break;
}
}
no[]=;
for(int i=;i<=n-;i++)
{
all+=phi(i);
}
all*=;
all+=;
printf("%d",all);
}

P2158仪仗队的更多相关文章

  1. 洛谷 - P2158 - 仪仗队 - 欧拉函数

    https://www.luogu.org/problemnew/show/P2158 好像以前有个妹子收割铲也是欧拉函数. 因为格点直线上的点,dx与dy的gcd相同,画个图就觉得是欧拉函数.但是要 ...

  2. Luogu P2158 仪仗队 题解报告

    题目传送门 [题目大意] 给定一个n×n的点方阵,求站在左下角的点能看到的点数 注意同一条直线上只能看到一个点 [思路分析] 因为是一个方阵,所以可以对称地算,那么对于半个方阵,这里假设是左上的半个方 ...

  3. 欧拉筛,线性筛,洛谷P2158仪仗队

    题目 首先我们先把题目分析一下. emmmm,这应该是一个找规律,应该可以打表,然后我们再分析一下图片,发现如果这个点可以被看到,那它的横坐标和纵坐标应该互质,而互质的条件就是它的横坐标和纵坐标的最大 ...

  4. 洛谷 P2158 仪仗队

    欧拉函数入门题... 当然如果有兴趣也可以用反演做...类似这题 题意就是求,方阵从左下角出发能看到多少个点. 从0开始给坐标 发现一个点能被看到,那么横纵坐标互质. 然后求欧拉函数的前缀和,* 2 ...

  5. 【Luogu】P2158仪仗队(欧拉函数)

    题目链接 首先来介绍欧拉函数. 设欧拉函数为f(n),则f(n)=1~n中与n互质的数的个数. 欧拉函数有三条引论: 1.若n为素数,则f(n)=n-1; 2.若n为pa,则f(n)=(p-1)*(p ...

  6. P2158 [SDOI2008]仪仗队

    P2158 [SDOI2008]仪仗队图是关于y=x对称的,横纵坐标一定是互质的否则在之前就被扫过了,所以就可以用欧拉函数再*2就完了. #include<iostream> #inclu ...

  7. 洛谷 P2158 [SDOI2008]仪仗队 解题报告

    P2158 [SDOI2008]仪仗队 题目描述 作为体育委员,C君负责这次运动会仪仗队的训练.仪仗队是由学生组成的N * N的方阵,为了保证队伍在行进中整齐划一,C君会跟在仪仗队的左后方,根据其视线 ...

  8. P2158/bzoj2190 [SDOI2008]仪仗队

    P2158 [SDOI2008]仪仗队 欧拉函数 计算下三角的点数再*2+1 观察斜率,自行体会 #include<iostream> #include<cstdio> #in ...

  9. P2158 [SDOI2008]仪仗队 && 欧拉函数

    P2158 [SDOI2008]仪仗队 题目描述 作为体育委员,C君负责这次运动会仪仗队的训练.仪仗队是由学生组成的N * N的方阵,为了保证队伍在行进中整齐划一,C君会跟在仪仗队的左后方,根据其视线 ...

随机推荐

  1. CentOS中JDK的三种配置方法

    第一种方法(相对稳妥): 使用yum直接安装,在root用户下执行 "yum install java-openjdk-*" 第二种方法(最为稳妥): 前往'https://www ...

  2. 使用autofac的一些问题

    None of the constructors found with 'Autofac.Core.Activators.Reflection.DefaultConstructorFinder' on ...

  3. mysql树查询、递归查询

    关键词:mysql树查询,mysql递归查询 转自:http://www.cnblogs.com/c-h-y/p/9420726.html 之前一直用的是Oracle,对于树形查询可以使用start ...

  4. MYSQL实战-1.mysql基本架构

    1.mysql可分为server层和存储引擎 1.1 server层: 连接器.查询缓存.分析器.优化器 .执行器.包含所有内置函数(日期,时间,数学.加密函数),所有跨存储引擎的功能都在此层,比如存 ...

  5. C#异步:AsyncCallback和IAsyncResult

    在线程池异步的执行委托,异步编程模型 msdn官方解释:https://msdn.microsoft.com/zh-cn/library/ms228972(VS.80).aspx 使用AsyncCal ...

  6. ubuntu开机只有一条横杠在闪的解决办法

    1.制作U盘启动盘,并试用ubuntu 2.输入以下命令,根据提示完成修复 sudo add-apt-repository ppa:yannubuntu/boot-repair && ...

  7. 【洛谷p1309】瑞士轮

    因为太菜不会写P1310 表达式的值,就只能过来水两篇博客啦qwq 另外这个题我是开o2才过的(虽然是写了归并排序)(可能我太菜写的归并不是还可以“剪枝”吧qwq)哎,果真还是太菜啦qwq 所以准备写 ...

  8. git常用相关操作

    // 账号密码克隆远程项目 git clone http://账号:密码@项目地址 // 查看当前状态 git status // 查看修改内容 git diff // 添加并提交 git add . ...

  9. Dubbo学习源码总结系列五--集群负载均衡

            Dubbo提供了哪些负载均衡机制?如何实现的?          LoadBalance接口:可以看出,通过SPI机制默认为RandomLoadBalance,生成的适配器类执行sel ...

  10. KNN算法项目实战——改进约会网站的配对效果

    KNN项目实战——改进约会网站的配对效果 1.项目背景: 海伦女士一直使用在线约会网站寻找适合自己的约会对象.尽管约会网站会推荐不同的人选,但她并不是喜欢每一个人.经过一番总结,她发现自己交往过的人可 ...