spark性能调优06-数据倾斜处理
1、数据倾斜
1.1 数据倾斜的现象
现象一:大部分的task都能快速执行完,剩下几个task执行非常慢
现象二:大部分的task都能快速执行完,但总是执行到某个task时就会报OOM,JVM out of Memory,task faild,task lost,resubmitting task等错误
1.2 出现的原因
大部分task分配的数据很少(某个可以对应的values只有几个),但某几个task分配的数据非常多(某个key对应的values非常多)
2、数据倾斜解决方案
2.1 聚合源数据
方案一:直接在生成hive表的hive etl中,对数据进行聚合处理
例如:在hive etl操作时,将key对应的values,全部使用一种特殊的格式进行拼接到字符串中(“key=sessionid, value: action_seq=1|user_id=1|search_keyword=火锅|category_id=001;action_seq=2|user_id=1|search_keyword=涮肉|category_id=001”),对可以进行groupby,那么在spark中直接获取到的是<key,values>,就有可能不需要shuffle操作,就可能避免数据倾斜。
方案二:使用更小维度进行聚合处理
例如:每个key对应的10万数据,但是这10万数据中如果按不同的城市、天数等维度进行聚合,可能每个key就对应1万数据,就可以避免数据倾斜
2.2 过滤导致倾斜的key
如果业务和需求可以接受的话,在使用spark sql查询hive表中的数据时,通过where语句将导致数据倾斜的key直接过滤掉
例如:有2个key对应的数据有10万,而其他的key都只有几百的数据,那么如果业务和需求允许的话,可以直接将那两个key过滤掉,自然就不会发生数据倾斜
2.3 提高shuffle操作reduce的并行度
reduce并行度增加后,可以让reduce task分配到的数据减少,有可能缓解或基本解决数据倾斜的问题
可以在shuffle算子中传入第二个参数设置reduce端的并行度
2.4 使用随机key实现双重聚合
先将一样的key通过随机数进行拼接为新的不同的key进行局部聚合,然后将添加的随机数去掉后重新进行局部聚合(对groupByKey、reduceByKey有比较好的效果)
/**
* 使用随机key实现双重聚合
* 处理sessionRowPairRdd..groupByKey()数据倾斜
*/
final Random random=new Random();
//将相同的key进行随机打散后聚合
sessionRowPairRdd.mapToPair(new PairFunction<Tuple2<String,Row>, String, Row>() {
private static final long serialVersionUID = 1L;
@Override
public Tuple2<String, Row> call(Tuple2<String, Row> tuple2) throws Exception {
return new Tuple2<String, Row>(random.nextInt()+"_"+tuple2._1, tuple2._2);
}
}).groupByKey() //将打散后的key还原后再次进行聚合
.mapToPair(new PairFunction<Tuple2<String,Iterable<Row>>, String, Iterable<Row>>() {
private static final long serialVersionUID = 1L;
@Override
public Tuple2<String, Iterable<Row>> call(Tuple2<String, Iterable<Row>> tuple2)
throws Exception {
String key = tuple2._1;
return new Tuple2<String, Iterable<Row>>(key.split("_")[], tuple2._2);
}
}).groupByKey();
/**
* 使用随机key实现双重聚合 结束
*/
2.5 将reduce join转换为map join
如果两个Rdd需要进行join操作,并且一个Rdd比较小,可以通过broadcast把小的Rdd广播出去
/**
* 使用map join 替换reduce join
* 处理 userIdPartAggrInfoPairRdd.join(userIdInfoPairRdd)导致的数据倾斜
*/
//将小的Rdd userIdInfoPairRdd 作为广播变量
final Broadcast<Map<Long, Row>> broadcastUserIdInfoPairMap=javaSparkContext.broadcast(userIdInfoPairRdd.collectAsMap()); //使用map方式代替reduce join
userIdJoinRdd=userIdPartAggrInfoPairRdd.mapToPair(new PairFunction<Tuple2<Long,String>, Long, Tuple2<String, Row>>() {
private static final long serialVersionUID = 1L;
@Override
public Tuple2<Long, Tuple2<String, Row>> call(Tuple2<Long, String> tuple2)
throws Exception {
return new Tuple2<Long, Tuple2<String,Row>>(tuple2._1, new Tuple2<String, Row>(tuple2._2, broadcastUserIdInfoPairMap.value().get(tuple2._1)));
}
});
/**
* 使用map join 替换reduce join 结束
*/
2.6 sample采样倾斜key进行两次join
如果两个Rdd需要进行join操作,并且两个Rdd都比较大,不太适合使用2.5进行处理,但只有几个key会导致数据倾斜,可以先通过sample采样找出导致数据倾斜的key,然后根据找出导致数据倾斜的key将Rdd分为两个Rdd,用分成的两个Rdd分别于另一个Rdd经join后使用union进行合并为最后的Rdd
/**
* 使用sample采样倾斜key进行两次join
* 处理userIdPartAggrInfoPairRdd.join(userIdInfoPairRdd)导致的数据倾斜
*/
//userIdPartAggrInfoPairRdd sample采样查找数据倾斜的sessionId
final Long skewUserId=
//进行sample采样
userIdPartAggrInfoPairRdd.sample(false, 0.1, )
//将采样的数据映射为<userId,1>
.mapToPair(new PairFunction<Tuple2<Long,String>, Long, Long>() {
private static final long serialVersionUID = 1L;
@Override
public Tuple2<Long, Long> call(Tuple2<Long, String> tuple2) throws Exception {
return new Tuple2<Long, Long>(tuple2._1, 1l);
} //按userId进行统计<userId,count>
}).reduceByKey(new Function2<Long, Long, Long>() {
private static final long serialVersionUID = 1L;
@Override
public Long call(Long v1, Long v2) throws Exception {
return v1+v2;
} //将统计结果映射为<count,userId>
}).mapToPair(new PairFunction<Tuple2<Long,Long>, Long, Long>() {
private static final long serialVersionUID = 1L;
@Override
public Tuple2<Long, Long> call(Tuple2<Long, Long> tuple2) throws Exception {
return new Tuple2<Long, Long>(tuple2._2, tuple2._1);
} //按个数降序排列,并获取最大的userId
}).sortByKey(false).take().get()._2; //将导致数据倾斜的userId过滤出来后与userIdInfoPairRdd进行join
JavaPairRDD<Long, Tuple2<String, Row>> skewUserIdJoinRdd = userIdPartAggrInfoPairRdd.filter(new Function<Tuple2<Long,String>, Boolean>() {
private static final long serialVersionUID = 1L;
@Override
public Boolean call(Tuple2<Long, String> tuple2) throws Exception {
return tuple2._1.longValue()==skewUserId;
}
}).join(userIdInfoPairRdd); //将正常的userId过滤出来后与userIdInfoPairRdd进行join
JavaPairRDD<Long, Tuple2<String, Row>> commonUserIdJoinRdd = userIdPartAggrInfoPairRdd.filter(new Function<Tuple2<Long,String>, Boolean>() {
private static final long serialVersionUID = 1L;
@Override
public Boolean call(Tuple2<Long, String> tuple2) throws Exception {
return tuple2._1.longValue()!=skewUserId;
}
}).join(userIdInfoPairRdd); //将导致数据倾斜的userId join后的rdd和正常的userId join后的rdd合并为最终的rdd
userIdJoinRdd=skewUserIdJoinRdd.union(commonUserIdJoinRdd);
/**
* 使用sample采样倾斜key进行两次join结束
*/
2.7 使用随机数以及扩容表进行join
spark性能调优06-数据倾斜处理的更多相关文章
- Spark性能调优之解决数据倾斜
Spark性能调优之解决数据倾斜 数据倾斜七种解决方案 shuffle的过程最容易引起数据倾斜 1.使用Hive ETL预处理数据 • 方案适用场景:如果导致数据倾斜的是Hive表.如果该Hiv ...
- spark性能调优 数据倾斜 内存不足 oom解决办法
[重要] Spark性能调优——扩展篇 : http://blog.csdn.net/zdy0_2004/article/details/51705043
- [Spark性能调优] 第一章:性能调优的本质、Spark资源使用原理和调优要点分析
本課主題 大数据性能调优的本质 Spark 性能调优要点分析 Spark 资源使用原理流程 Spark 资源调优最佳实战 Spark 更高性能的算子 引言 我们谈大数据性能调优,到底在谈什么,它的本质 ...
- spark 性能调优(一) 性能调优的本质、spark资源使用原理、调优要点分析
转载:http://www.cnblogs.com/jcchoiling/p/6440709.html 一.大数据性能调优的本质 编程的时候发现一个惊人的规律,软件是不存在的!所有编程高手级别的人无论 ...
- Spark性能调优-基础篇
前言 在大数据计算领域,Spark已经成为了越来越流行.越来越受欢迎的计算平台之一.Spark的功能涵盖了大数据领域的离线批处理.SQL类处理.流式/实时计算.机器学习.图计算等各种不同类型的计算操作 ...
- Spark性能调优之代码方面的优化
Spark性能调优之代码方面的优化 1.避免创建重复的RDD 对性能没有问题,但会造成代码混乱 2.尽可能复用同一个RDD,减少产生RDD的个数 3.对多次使用的RDD进行持久化(ca ...
- Spark性能调优之合理设置并行度
Spark性能调优之合理设置并行度 1.Spark的并行度指的是什么? spark作业中,各个stage的task的数量,也就代表了spark作业在各个阶段stage的并行度! 当分配 ...
- Spark性能调优之资源分配
Spark性能调优之资源分配 性能优化王道就是给更多资源!机器更多了,CPU更多了,内存更多了,性能和速度上的提升,是显而易见的.基本上,在一定范围之内,增加资源与性能的提升,是成正比的:写完了 ...
- Spark性能调优之Shuffle调优
Spark性能调优之Shuffle调优 • Spark底层shuffle的传输方式是使用netty传输,netty在进行网络传输的过程会申请堆外内存(netty是零拷贝),所以使用了堆外内存. ...
随机推荐
- ASE Alpha Sprint - backend scrum 2
本次scrum于2019.11.5再sky garden进行,持续30分钟. 参与人: Zhikai Chen, Jia Ning, Haifeng Chen, Hao Wang 请假: Xin Ka ...
- Linux性能优化从入门到实战:05 CPU篇:硬中断、软中断
软中断(softirq)会导致CPU 使用率升高 中断是系统用来响应硬件设备请求的一种机制,它会打断进程的正常调度和执行,然后调用内核中的中断处理程序来响应设备的请求.中断其实是一种异步的事件 ...
- python基础--2 字符串
整型 int python3里,不管数字多大都是int类型 python2里面有长整型long 将整型字符串转换为数字 # a='123' # print(type(a),a) # b=int(a) ...
- 动态规划—distinct-subsequences
题目: Given a string S and a string T, count the number of distinct subsequences of T in S. A subseque ...
- csv导入数据
1.关闭Neo4j服务器进程 2.删除graph.db数据库文件 /data/databases/ rm -rf graph.db 3.重新启动Neo4j服务器 4.数据导入import 5.wi ...
- jQuery入门、jQuery选择器、jQuery操作
一.什么是jQuery及如何使用 1.1 jQuery 简介 jQuery是一个兼容多浏览器的javascript函数库(把我们常用的一些功能进行了封装,方便我们来调用,提高我们的开发效率.),核心理 ...
- mobiscroll实现二级联动菜单
mobiscroll是一款非常使用的移动端选择控件,一般用来日期时间的选择的多,其实从官网上可以看到它有很多方面的使用,这里就不一一介绍了,有兴趣可以去官网上查阅一下 https://demo.mob ...
- 外媒:Apple面临着印度iPhone的停用
据外媒报道:印度电信管理局(TRAI)制定遏制令人讨厌的消息的新规则可能导致印度数百万部iPhone的停用. 该监管机构本周早些时候宣布了“2018年电信商业通信客户偏好规定”,根据该规定,它已提议“ ...
- 01.python对象
标准类型 数字 Integer 整型 Boolean 布尔型 Long integer 长整型 (python2) Floating point real number 浮点型 Complex num ...
- MySQL WAL
原创转载请注明出处:https://www.cnblogs.com/agilestyle/p/11447794.html WAL: Write-Ahead Logging 先写日志,再写磁盘.具体说, ...