用python做数据分析pandas库介绍之DataFrame基本操作

 

怎样删除list中空字符?

最简单的方法:new_list = [ x for x in li if x != '' ]

这一部分主要学习pandas中基于前面两种数据结构的基本操作。


一、查看数据(查看对象的方法对于Series来说同样适用)

1.查看DataFrame前xx行或后xx行
a=DataFrame(data);
a.head(6)表示显示前6行数据,若head()中不带参数则会显示全部数据。
a.tail(6)表示显示后6行数据,若tail()中不带参数则也会显示全部数据。

2.查看DataFrame的index,columns以及values
a.index ; a.columns ; a.values 即可

3.describe()函数对于数据的快速统计汇总
a.describe()对每一列数据进行统计,包括计数,均值,std,各个分位数等。

4.对数据的转置
a.T

5.对轴进行排序
a.sort_index(axis=1,ascending=False);
其中axis=1表示对所有的columns进行排序,下面的数也跟着发生移动。后面的ascending=False表示按降序排列,参数缺失时默认升序。

6.对DataFrame中的值排序
a.sort(columns='x')
即对a中的x这一列,从小到大进行排序。注意仅仅是x这一列,而上面的按轴进行排序时会对所有的columns进行操作。

二、选择对象

1.选择特定列和行的数据
a['x'] 那么将会返回columns为x的列,注意这种方式一次只能返回一个列。a.x与a['x']意思一样。

取行数据,通过切片[]来选择
如:a[0:3] 则会返回前三行的数据。

2.loc是通过标签来选择数据
a.loc['one']则会默认表示选取行为'one'的行;

a.loc[:,['a','b'] ] 表示选取所有的行以及columns为a,b的列;

a.loc[['one','two'],['a','b']] 表示选取'one'和'two'这两行以及columns为a,b的列;

a.loc['one','a']与a.loc[['one'],['a']]作用是一样的,不过前者只显示对应的值,而后者会显示对应的行和列标签。

3.iloc则是直接通过位置来选择数据
这与通过标签选择类似
a.iloc[1:2,1:2] 则会显示第一行第一列的数据;(切片后面的值取不到)

a.iloc[1:2] 即后面表示列的值没有时,默认选取行位置为1的数据;

a.iloc[[0,2],[1,2]] 即可以自由选取行位置,和列位置对应的数据。

4.使用条件来选择
使用单独的列来选择数据
a[a.c>0] 表示选择c列中大于0的数据

使用where来选择数据
a[a>0] 表直接选择a中所有大于0的数据

使用isin()选出特定列中包含特定值的行
a1=a.copy()
a1[a1['one'].isin(['2','3'])] 表显示满足条件:列one中的值包含'2','3'的所有行。

三、设置值(赋值)

赋值操作在上述选择操作的基础上直接赋值即可。
例a.loc[:,['a','c']]=9 即将a和c列的所有行中的值设置为9
a.iloc[:,[1,3]]=9 也表示将a和c列的所有行中的值设置为9

同时也依然可以用条件来直接赋值
a[a>0]=-a 表示将a中所有大于0的数转化为负值

四、缺失值处理

在pandas中,使用np.nan来代替缺失值,这些值将默认不会包含在计算中。

1.reindex()方法
用来对指定轴上的索引进行改变/增加/删除操作,这将返回原始数据的一个拷贝。
a.reindex(index=list(a.index)+['five'],columns=list(a.columns)+['d'])

a.reindex(index=['one','five'],columns=list(a.columns)+['d'])

即用index=[]表示对index进行操作,columns表对列进行操作。

2.对缺失值进行填充
a.fillna(value=x)
表示用值为x的数来对缺失值进行填充

3.去掉包含缺失值的行
a.dropna(how='any')
表示去掉所有包含缺失值的行

五、合并

1.contact
contact(a1,axis=0/1,keys=['xx','xx','xx',...]),其中a1表示要进行进行连接的列表数据,axis=1时表横着对数据进行连接。axis=0或不指定时,表将数据竖着进行连接。a1中要连接的数据有几个则对应几个keys,设置keys是为了在数据连接以后区分每一个原始a1中的数据。

例:a1=[b['a'],b['c']]
result=pd.concat(a1,axis=1,keys=['1','2'])

2.Append 将一行或多行数据连接到一个DataFrame上
a.append(a[2:],ignore_index=True)
表示将a中的第三行以后的数据全部添加到a中,若不指定ignore_index参数,则会把添加的数据的index保留下来,若ignore_index=Ture则会对所有的行重新自动建立索引。

3.merge类似于SQL中的join
设a1,a2为两个dataframe,二者中存在相同的键值,两个对象连接的方式有下面几种:
(1)内连接,pd.merge(a1, a2, on='key')
(2)左连接,pd.merge(a1, a2, on='key', how='left')
(3)右连接,pd.merge(a1, a2, on='key', how='right')
(4)外连接, pd.merge(a1, a2, on='key', how='outer')
至于四者的具体差别,具体学习参考sql中相应的语法。

六、分组(groupby)

用pd.date_range函数生成连续指定天数的的日期
pd.date_range('20000101',periods=10)


此外用a.groupby('gender').size()可以对各个gender下的数目进行计数。

所以可以看到groupby的作用相当于:
按gender对gender进行分类,对应为数字的列会自动求和,而为字符串类型的列则不显示;当然也可以同时groupby(['x1','x2',...])多个字段,其作用与上面类似。

七、Categorical按某一列重新编码分类

如六中要对a中的gender进行重新编码分类,将对应的0,1转化为male,female,过程如下:

所以可以看出重新编码后的编码会自动增加到dataframe最后作为一列。

八、相关操作

描述性统计:
1.a.mean() 默认对每一列的数据求平均值;若加上参数a.mean(1)则对每一行求平均值;

2.统计某一列x中各个值出现的次数:a['x'].value_counts();

3.对数据应用函数
a.apply(lambda x:x.max()-x.min())
表示返回所有列中最大值-最小值的差。

4.字符串相关操作
a['gender1'].str.lower() 将gender1中所有的英文大写转化为小写,注意dataframe没有str属性,只有series有,所以要选取a中的gender1字段。

九、时间序列

在六中用pd.date_range('xxxx',periods=xx,freq='D/M/Y....')函数生成连续指定天数的的日期列表。
例如pd.date_range('20000101',periods=10),其中periods表示持续频数;
pd.date_range('20000201','20000210',freq='D')也可以不指定频数,只指定起始日期。

此外如果不指定freq,则默认从起始日期开始,频率为day。其他频率表示如下:

1.png

十、画图(plot)

 
 

2.PNG

也可以使用下面的代码来生成多条时间序列图:

3.png

十一、导入和导出文件

写入和读取excel文件
虽然写入excel表时有两种写入xls和csv,但建议少使用csv,不然在表中调整数据格式时,保存时一直询问你是否保存新格式,很麻烦。而在读取数据时,如果指定了哪一张sheet,则在pycharm又会出现格式不对齐。

还有将数据写入表格中时,excel会自动给你在表格最前面增加一个字段,对数据行进行编号。

 

pandas dataframe类型操作的更多相关文章

  1. 从mysql8.0读取数据并形成pandas dataframe类型数据,精确定位行列式中的元素,并读取

    from pandas import * import pandas as pd from sqlalchemy import create_engine engine = create_engine ...

  2. Python pandas DataFrame操作

    1. 从字典创建Dataframe >>> import pandas as pd >>> dict1 = {'col1':[1,2,5,7],'col2':['a ...

  3. pandas DataFrame 数据处理常用操作

    Xgboost调参: https://wuhuhu800.github.io/2018/02/28/XGboost_param_share/ https://blog.csdn.net/hx2017/ ...

  4. Python时间处理,datetime中的strftime/strptime+pandas.DataFrame.pivot_table(像groupby之类 的操作)

    python中datetime模块非常好用,提供了日期格式和字符串格式相互转化的函数strftime/strptime 1.由日期格式转化为字符串格式的函数为: datetime.datetime.s ...

  5. 如何迭代pandas dataframe的行

    from:https://blog.csdn.net/tanzuozhev/article/details/76713387 How to iterate over rows in a DataFra ...

  6. 【跟着stackoverflow学Pandas】add one row in a pandas.DataFrame -DataFrame添加行

    最近做一个系列博客,跟着stackoverflow学Pandas. 以 pandas作为关键词,在stackoverflow中进行搜索,随后安照 votes 数目进行排序: https://stack ...

  7. pandas DataFrame的修改方法

    pandas DataFrame的增删查改总结系列文章: pandas DaFrame的创建方法 pandas DataFrame的查询方法 pandas DataFrame行或列的删除方法 pand ...

  8. pandas DataFrame的查询方法(loc,iloc,at,iat,ix的用法和区别)

    pandas DataFrame的增删查改总结系列文章: pandas DaFrame的创建方法 pandas DataFrame的查询方法 pandas DataFrame行或列的删除方法 pand ...

  9. pandas DataFrame的创建方法

    pandas DataFrame的增删查改总结系列文章: pandas DaFrame的创建方法 pandas DataFrame的查询方法 pandas DataFrame行或列的删除方法 pand ...

随机推荐

  1. Slimvoice快速而小巧

    这可行吗?绝对没问题.完全加载的最大页面只有230 KB.因为所有内容都被缓存和压缩,所以随后查看的每个页面只有大约6 KB,这比我见过的具有相同功能的SPA要小得多. Slimvoice快速而小巧, ...

  2. linux下/etc/rc.d目录的介绍及redhat启动顺序

    init inittab rc0 rc1 rc2 rc3 rc5 rc6 rcS init.d init 系统启动超级进程 inittab 进程启动配置文件 rc0 - rc6 各启动级别的启动脚本 ...

  3. 记一次部署PHP遇到的编码问题故障

    php开发给我项目和数据库,我按正常部署流程部署,开始发现之梦的后台登陆不了,后发现是属主属组不对,代码直接解压后是root的,更改后,后台能登陆,但部分显示乱码.后将正常的数据库文件重新导入后,显示 ...

  4. zencart模板列表下载地址

    下载index.html文件后用浏览器打开,里面有一百多个zencart模板示例 下载地址:zencart模板示例下载地址 或者复制下面网址,用浏览器打开即可下载: http://bcs.duapp. ...

  5. 【HEOI2015】小Z的房间

    题意 https://www.luogu.org/problemnew/show/P4111 题解 前置知识:矩阵树定理 不要问证明,我不会,用就完事了(反正一般也不会用到) 因为矩阵树定理就是求一张 ...

  6. 人人商城返回Json格式的数据

    人人商城返回Json格式的数据 1.找到该插件对应的 core/mobile 路径 2.新建一个 api.php 文件 <?php header('Content-Type:applicatio ...

  7. poj3728 The merchant[倍增]

    给一棵点带权树,$q$次询问,问树上$x$到$y$路径上,两点权之差(后面的减去前面的)的最大值. 这个是在树链上找点,如果沿路径的最小值在最大值之前出现那肯定答案就是$maxx-minx$,但是反之 ...

  8. 使用Vue做个简单的评论 + localstorage存储

     1.引入Vue.js 2.编写代码 代码 <!DOCTYPE html> <html lang="zh"> <head> <meta c ...

  9. select添加皮肤 jquery

    由于select修改样式不能兼容浏览器,也不能随意修改,那么就需要模拟select,给select添加皮肤了,代码如下 <!DOCTYPE html> <html lang=&quo ...

  10. (转)Android中图片占用内存计算

    在Android开发中,我现在发现很多人还不会对图片占用内存进行很好的计算.因此撰写该博文来做介绍,期望达到抛砖引玉的作用.   Android中一张图片(BitMap)占用的内存主要和以下几个因数有 ...