Monitor HDU 6514 二维差分入门学习

题意

小腾有\(n*m\)的田地,但是有小偷来偷东西,在一片矩形区域上,有一部分区域是监控可以覆盖到的,这部分区域由一个或多个包含于该矩形区域的小矩形构成;现在给你另一个包含在该矩形区域的小矩形A,问你这个小矩形能否被监控完全覆盖。

解题思路

这个题可以模拟做,就是开一个二维数组,把能监控的区域标记为1,否者就是0,然后在给的小矩形内看看这里面1的个数已不是等于小矩形的面积,是的话就是YES,否者就是NO。但是这个方法会超时。我就无能为力了,这时旁白同学说这个题得用二维差分来做(还没学过),神奇,我就找了个博客,有位大佬正好写了这道题,而且很详细,易懂,点我进来

这里我就补充一下自己看过这个博客后的一点见解。

  • 这里建立二维数组,坐标不用像大佬所说的那样转换,就正常那样就行,二维数组可以正常表示,不用把左下改为左上,右上改为右下,这里可能是那位作者想错了。
  • 这里需要使用vector来建立二维数组,要不然会爆,而这里如何用vector来建立二维数组我还真不会,下面代码里见(这个也很重要)。
  • 感觉差分就是树状数组的简洁版。

代码实现

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
using namespace std;
const int maxn=1e7+7;
int n, m, p, q;
int main()
{
int x1, y1, x2, y2;
while(scanf("%d%d", &n, &m)!=EOF)
{
vector< vector<int> > recode(n+2, vector<int>(m+2)), glass(n+2, vector<int>(m+2));
//这里n+2代表第一维的参量,第二个是代表第二维
//这样声明vector后就可以直接使用recode[i][j],只要在范围内就行
//如果使用vector<int> recode[maxm],我们不能直接使用比如recode[2][3],
//因为可能在recode[2][3]之前,并没有数字存储。
scanf("%d", &p);
for(int i=1; i<=p; i++)
{
scanf("%d%d%d%d", &x1, &y1, &x2, &y2);
recode[x1][y1]++;
recode[x2+1][y2+1]++;
recode[x1][y2+1]--;
recode[x2+1][y1]--;
}
for(int i=1; i<=n; i++)
{
for(int j=1; j<=m; j++)
{
recode[i][j]+=recode[i-1][j]+recode[i][j-1]-recode[i-1][j-1];
}
}
for(int i=1; i<=n; i++)
{
for(int j=1; j<=m; j++)
{
glass[i][j]+=glass[i-1][j]+glass[i][j-1]-glass[i-1][j-1] + ( recode[i][j]>0? 1:0);
}
}
scanf("%d", &q);
while(q--)
{
scanf("%d%d%d%d", &x1, &y1, &x2, &y2);
int eara=glass[x2][y2]-glass[x2][y1-1]-glass[x1-1][y2]+glass[x1-1][y1-1];
if(eara==(x2-x1+1)*(y2-y1+1))
{
printf("YES\n");
}
else printf("NO\n");
}
}
return 0;
}

END

Monitor HDU6514 二维差分入门学习的更多相关文章

  1. HDU - 6514 Monitor(二维差分)

    题意 给定一个\(n×m\)的矩阵.(\(n×m <= 1e7\)). \(p\)次操作,每次可以在这个矩阵中覆盖一个矩形. \(q\)次询问,每次问一个矩形区域中,是否所有的点都被覆盖. 解析 ...

  2. 洛谷 P3397 地毯 【二维差分标记】

    题目背景 此题约为NOIP提高组Day2T1难度. 题目描述 在n*n的格子上有m个地毯. 给出这些地毯的信息,问每个点被多少个地毯覆盖. 输入输出格式 输入格式: 第一行,两个正整数n.m.意义如题 ...

  3. NOI 2012 魔幻棋盘 | 二维差分 + 二维线段树

    题目:luogu 2086 二维线段树,按套路差分原矩阵,gcd( x1, x2, ……, xn ) = gcd( xi , x2 - x1 , ……, xn - xn-1 ),必须要有一个原数 xi ...

  4. Codeforces 1262E Arson In Berland Forest(二维前缀和+二维差分+二分)

     题意是需要求最大的扩散时间,最后输出的是一开始的火源点,那么我们比较容易想到的是二分找最大值,但是我们在这满足这样的点的时候可以发现,在当前扩散时间k下,以这个点为中心的(2k+1)2的正方形块内必 ...

  5. Gym 102028J 扫描线/二维差分 + 解方程

    题意:有一个二维平面,以及n个操作,每个操作会选择一个矩形,使得这个二维平面的一部分被覆盖.现在你可以取消其中的2个操作,问最少有多少块地方会被覆盖? 思路:官方题解简洁明了,就不细说了:https: ...

  6. Codeforces Round #578 (Div. 2) 二维差分 可做模板

    题意: 在n*n的矩阵中,你可以选择一个k*k的子矩阵,然后将这个子矩阵中的所有B全部变为W,问你怎么选择这个子矩阵使得最终的矩阵中某一行全是W或者某一列全是W的个数最多 题解:考虑每一行和每一列,对 ...

  7. 2020ICPC&#183;小米 网络选拔赛第一场 J.Matrix Subtraction (贪心,二维差分)

    题意:给一个\(nXm\)的矩阵,可以选取\(aXb\)的子矩阵,使子矩阵中的所有元素减一,问最后是否能使矩阵中所有元素变为\(0\). 题解:首先贪心,我们看最左上角的元素,如果\(g[1][1]\ ...

  8. 220514 T2 画画 (二维差分)

    首先我们需要特判只涂了一种颜色的情况: (1)k=1,此时答案就是1:(2)k>1,涂的这种颜色肯定不能是第一个,答案是k-1; 对于其他正常情况,我们对于每个颜色找到一个最小的矩形(这个矩形内 ...

  9. HDU-6514 Monitor(二维前缀和+差分)

    http://acm.hdu.edu.cn/showproblem.php?pid=6514 Problem Description Xiaoteng has a large area of land ...

随机推荐

  1. YUM源使用阿里镜像

    备份系统自带的yum源 # 前提:需要联网才能使用 mv /etc/yum.repos.d/CentOS-Base.repo /etc/yum.repos.d/CentOS-Base.repo.bac ...

  2. bzoj1195 [HNOI2006]最短母串 AC 自动机+状压+bfs

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=1195 题解 建立 AC 自动机,然后构建出 trie 图. 然后直接在 trie 图上走.但是 ...

  3. bzoj5089 最大连续子段和 分块+复杂度分析+凸包

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=5089 题解 本来打算迟一点再写这个题解的,还有一个小问题没有弄清楚. 不过先写一下存个档吧. ...

  4. 【LuoguP5171】Earthquake

    题目链接 题意 求满足如下不等式的非负整数 \(x,y\) 的对数 \[ax+by\leq c\] Sol a,b,c 都是非负的,那么先随便变个形: \[y\leq\frac{c-ax}{b}\] ...

  5. Top 8 Diagrams for Understanding Java

    Reference: http://www.programcreek.com/2013/09/top-8-diagrams-for-understanding-java/ A diagram is s ...

  6. IDEA创建SpringBoot,并实现、运行简单实例

    1.打开IDEA,点击 +Create New Project. 开始创建一个新项目. 2.在左侧菜单找到并点击 Spring Initializr,点击next.注意,这里idea默认使用https ...

  7. ASP.net 能写一个上传整个文件夹的东东

    IE的自带下载功能中没有断点续传功能,要实现断点续传功能,需要用到HTTP协议中鲜为人知的几个响应头和请求头. 一. 两个必要响应头Accept-Ranges.ETag 客户端每次提交下载请求时,服务 ...

  8. 01-pandas基础-Series与DataFrame

    一.Series: 1,介绍:Series是以中类似于一维数组的对象,由一维数组以及与之相关的标签组成 特点:索引在左边,值在右边.在创建时,若我们未给数据指定索引,Series会自动创建一个0到N- ...

  9. JavaScript异步编程助手:Promise模式

    :Promises是一种令代码异步行为更加优雅的抽象,它很有可能是JavaScript的下一个编程范式,一个Promise即表示任务结果,无论该任务是否完成. 异步模式在Web编程中变得越来越重要,对 ...

  10. Python学习笔记(三)- SyntaxError: Non-ASCII character '\xe7' in file

    在编辑Python时,当有中文输出或者注释时,出现错误提示:“SyntaxError: Non-ASCII character '\xe7' in file“ 原因:python的默认编码文件是用的A ...