HDU 2783 You’ll be Working on the Railroad(最短路)
You’ll be Working on the Railroad
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 246 Accepted Submission(s): 63
Your county has just won a state grant to install a rail system between
the two largest towns in the county -- Acmar and Ibmar. This rail
system will be installed in sections, each section connecting two
different towns in the county, with the first section starting at Acmar
and the last ending at Ibmar. The provisions of the grant specify that
the state will pay for the two largest sections of the rail system, and
the county will pay for the rest (if the rail system consists of only
two sections, the state will pay for just the larger section; if the
rail system consists of only one section, the state will pay nothing).
The state is no fool and will only consider simple paths; that is, paths
where you visit a town no more than once. It is your job, as a recently
elected county manager, to determine how to build the rail system so
that the county pays as little as possible. You have at your disposal
estimates for the cost of connecting various pairs of cities in the
county, but you're short one very important requirement -- the brains to
solve this problem. Fortunately, the lackeys in the computing services
division will come up with something.
will contain multiple test cases. Each case will start with a line
containing a single positive integer n<=50 , indicating the number of
railway section estimates. (There may not be estimates for tracks
between all pairs of towns.) Following this will be n lines each
containing one estimate. Each estimate will consist of three integers s e
c , where s and e are the starting and ending towns and c is the
cost estimate between them. (Acmar will always be town 0 and Ibmar will
always be town 1. The remaining towns will be numbered using consecutive
numbers.) The costs will be symmetric, i.e., the cost to build a
railway section from town s to town e is the same as the cost to go
from town e to town s , and costs will always be positive and no
greater than 1000. It will always be possible to somehow travel from
Acmar to Ibmar by rail using these sections. A value of n = 0 will
signal the end of input.
c1 c2 ... cm cost
where
each ci is a city on the cheapest path and cost is the cost to the
county (note c1 will always be 0 and cm will always be 1 and ci and ci +
1 are connected on the path). In case of a tie, print the path with the
shortest number of sections; if there is still a tie, pick the path
that comes first lexicographically.
题意是给出 n 条边。
问从 0 -> 1 可以忽略2条路权,所需总权最小是多少,路径是什么 。
只有1条边时,不可忽略。
有2条时,可以忽略一条。
因为 n 是很少 , 直接暴力枚举可以忽略的边。
然后跑dij.来维护一个最优的路径。
这条题思路不难,不过就是写起来有点恶心
#include <cstdio>
#include <cstring>
#include <queue>
#include <iostream>
#include <map>
#include <stack>
using namespace std ;
typedef pair<int,int> pii ;
#define X first
#define Y second
const int N = ;
const int inf = 1e9+ ;
typedef long long LL;
int n , xx[N] , pre[N] , ww[N] , tot ; vector<pii>g[N]; struct node {
int a , c , d , id ;
node(){};
node( int a , int c , int d , int id ):a(a),c(c),d(d),id(id){}
bool operator < ( const node &A ) const {
if( d != A.d ) return d > A.d ;
else if( c != A.c ) return c > A.c ;
else {
stack<int>s1 , s2; int id1 = id , id2 = A.id ;
while( id1 != - ) { s1.push( xx[id1] ); id1 = pre[id1] ; }
while( id2 != - ) { s2.push( xx[id2] ); id2 = pre[id2] ; }
while( !s1.empty() ) {
int a = s1.top() ; s1.pop() ;
int b = s2.top() ; s2.pop() ;
if( a > b ) return true ;
}
return false ;
}
}
};
int bestpath[N] , bestcnt , bestcost ;
int tmppath[N] , tmpcnt , tmpcost ; void Choose_best( int id , int cnt ) {
if( tmpcost > bestcost ) return ;
stack<int>s ;
while( id != - ) { s.push( xx[id] ); id = pre[id] ; }
tmpcnt = ;
while( !s.empty() ) { tmppath[tmpcnt++] = s.top() ; s.pop() ; } if( tmpcost < bestcost ) {
bestcnt = tmpcnt ;
bestcost = tmpcost ;
for( int i = ; i < tmpcnt ; ++i ) bestpath[i] = tmppath[i] ;
return ;
}
if( cnt > bestcnt ) return ;
else if( cnt < bestcnt ) {
bestcnt = tmpcnt ;
for( int i = ; i < tmpcnt ; ++i ) bestpath[i] = tmppath[i] ;
} else {
for( int i = ; i < tmpcnt ; ++i ) {
if( bestpath[i] > tmppath[i] ) {
for( int j = i ; j < bestcnt ; ++j ) {
bestpath[j] = tmppath[j] ;
}
} else if ( bestpath[i] < tmppath[i] ) {
break ;
}
}
}
} int dis[N] ; void dij() {
memset( dis , 0x3f , sizeof dis );
priority_queue<node>que;
tot = ; xx[tot] = , pre[tot] = - ; tot++ ;
que.push( node(,,,tot-) );
dis[] = ;
while( !que.empty() ) {
int u = que.top().a , cnt = que.top().c , cost = que.top().d , id = que.top().id ;
que.pop();
if( cost > dis[u] ) continue ;
if( u == ) {
if( dis[u] ) {
tmpcost = dis[u] ;
Choose_best( id , cnt );
}
return ;
}
for( int i = ; i < g[u].size() ; ++i ) {
int v = g[u][i].X , w = ww[g[u][i].Y] ;
if( dis[v] > dis[u] + w ) {
dis[v] = dis[u] + w ;
xx[tot] = v ; pre[tot] = id ; tot++;
que.push( node( v , cnt+ , dis[v] , tot - ) ) ;
}
}
}
} void Gao() {
dij();
for( int i = ; i < n ; ++i ) {
int cc = ww[i] ; ww[i] = ;
dij();
for( int j = i + ; j < n ; ++j ) {
int dd = ww[j] ; ww[j] = ;
dij(); ww[j] = dd ;
}
ww[i] = cc ;
}
for( int i = ; i < bestcnt ; ++i ) cout << bestpath[i] << ' ' ;
cout << bestcost << endl ;
} int Run() {
while( cin >> n && n ) {
bestcost = bestcnt = inf ;
for( int i = ; i < N ; ++i ) g[i].clear();
for( int i = ; i < n ; ++i ) {
int u , v , w ; cin >> u >> v >> w ;
ww[i] = w ;
g[u].push_back(pii(v,i));
g[v].push_back(pii(u,i));
}
Gao();
}
return ;
} int main() {
#ifdef LOCAL
freopen("in.txt","r",stdin);
#endif // LOCAL
ios::sync_with_stdio();
return Run();
}
HDU 2783 You’ll be Working on the Railroad(最短路)的更多相关文章
- HDU 4725 The Shortest Path in Nya Graph(最短路拆点)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4725 题意:n个点,某个点属于某一层.共有n层.第i层的点到第i+1层的点和到第i-1层的点的代价均是 ...
- HDU 6071 Lazy Running(很牛逼的最短路)
http://acm.hdu.edu.cn/showproblem.php?pid=6071 题意: 1.2.3.4四个点依次形成一个环,现在有个人从2结点出发,每次可以往它相邻的两个结点跑,求最后回 ...
- HDU 4725 The Shortest Path in Nya Graph [构造 + 最短路]
HDU - 4725 The Shortest Path in Nya Graph http://acm.hdu.edu.cn/showproblem.php?pid=4725 This is a v ...
- HDU 5669 线段树优化建图+分层图最短路
用线段树维护建图,即把用线段树把每个区间都标号了,Tree1中子节点有到达父节点的单向边,Tree2中父节点有到达子节点的单向边. 每次将源插入Tree1,汇插入Tree2,中间用临时节点相连.那么T ...
- hdu 5137 How Many Maos Does the Guanxi Worth 最短路 spfa
How Many Maos Does the Guanxi Worth Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 512000/5 ...
- HDU 2066 一个人的旅行(单源最短路SPFA)
Description 虽然草儿是个路痴(就是在杭电待了一年多,居然还会在校园里迷路的人,汗~),但是草儿仍然很喜欢旅行,因为在旅途中 会遇见很多人(白马王子,^0^),很多事,还能丰富自己的阅历,还 ...
- HDU 3666 THE MATRIX PROBLEM (差分约束,最短路)
题意: 给一个n*m矩阵,每个格子上有一个数字a[i][j],给定L和U,问:是否有这样两个序列{a1...an}和{b1...bn},满足 L<=a[i][j]*ai/bj<=U .若存 ...
- hdu 1595 find the longest of the shortest【最短路枚举删边求删除每条边后的最短路,并从这些最短路中找出最长的那条】
find the longest of the shortest Time Limit: 1000/5000 MS (Java/Others) Memory Limit: 32768/32768 ...
- HDU 4725 The Shortest Path in Nya Graph (最短路)
The Shortest Path in Nya Graph Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K ...
随机推荐
- 锁,threading local,以及生产者和消费者模型
1.锁:Lock(一次放行一个) 线程安全,多线程操作时,内部会让所有的线程排队处理. 线程不安全:+人=>排队处理 以后锁代码块 v=[] lock=threading.Lock()#声明锁 ...
- [UVa1057] Routing
问题描述 As more and more transactions between companies and people are being carried out electronically ...
- postman-关联
1.提取 在Tests提取接口1的值如:userid //将获取的json数据赋给变量 var jsonData=pm.response.json(); //获取返回的userid值 user_id= ...
- asp.net能否上传文件夹下所有文件
HTML部分 <%@PageLanguage="C#"AutoEventWireup="true"CodeBehind="index.aspx. ...
- Activiti创建表(三)
创建Mysql 创建 mysql 数据库 activiti(名字任意):CREATE DATABASE activiti DEFAULT CHARACTER SET utf8; pom.xml < ...
- Linux 安装R包
https://www.cnblogs.com/jessepeng/p/10984983.html Linux 的R环境,可以通过anaconda jupyter notbook很容易的配置,见我之前 ...
- scanf() 与 gets()--转载
scanf( )函数和gets( )函数都可用于输入字符串,但在功能上有区别.若想从键盘上输入字符串"hi hello",则应该使用__gets__函数. gets可以接收空格:而 ...
- Essential Java.《Java 编程要点》
Essential Java.<Java 编程要点> Essential Java, is a book about the Essentials of Java Programming. ...
- ASP.NET MVC 下拉的使用(ViewData传递)
C#部分 public void GetViewData() { List<string> data = new List<string>(); data.Add(" ...
- ORACLE Physical Standby DG 之switch over
DG架构图如下: 计划,切换之后的架构图: DG切换: 主备切换:这里所有的数据库数据文件.日志文件的路径是一致的 [旧主库]主库primarydb切换为备库standby3主库检查switchove ...