The statements that describe valid input are known as preconditions and the conditions that the output should satisfy when the program has run are known as postconditions.

Universal quantification, which tells us that a predicate is true for every element under consideration,

Existential quantification, which tells us that there is one or more element under consideration for which the predicate is true.

DEFINITION 1

The universal quantification of P (x) is the statement “P (x) for all values of x in the domain.”

The notation ∀xP (x) denotes the universal quantification of P (x). Here ∀ is called the universal quantifier.

We read ∀xP (x) as “for all xP (x)” or “for every xP (x).”

An element for which P (x) is false is called a counterexample of ∀xP (x).

DEFINITION 2

The existential quantification of P (x) is the proposition “There exists an element x in the domain such that P (x).”

We use the notation ∃xP (x) for the existential quantification of P (x). Here ∃ is called the existential quantifier.

Binding Variables When a quantifier is used on the variable x, we say that this occurrence of the variable is bound.

An occurrence of a variable that is not bound by a quantifier or set equal to a particular value is said to be free.

All the variables that occur in a propositional function must be bound or set equal to a particular value to turn it into a proposition.

This can be done using a combination of universal quantifiers, existential quantifiers, and value assignments.

The part of a logical expression to which a quantifier is applied is called the scope of this quantifier. Consequently,

a variable is free if it is outside the scope of all quantifiers in the formula that specify this variable.

The uniqueness quantifier, denoted by ∃! or ∃1.

The notation ∃!xP (x) [or ∃1xP (x)] states “There exists a unique x such that P (x) is true.”

Other phrases for uniqueness quantification include “there is exactly one” and “there is one and only one.”

For instance, ∃!x(x − 1 = 0), where the domain is the set of real numbers, states that there is a unique real number x such that x − 1 = 0.

This is a true statement, as x = 1 is the unique real number such that x − 1 = 0.

Quantifiers with Restricted Domains

An abbreviated notation is often used to restrict the domain of a quantifier.

In this nota-tion, a condition a variable must satisfy is included after the quantifier.

Precedence of Quantifiers The quantifiers ∀ and ∃ have higher precedence than all logical operators from propositional calculus.

For example, ∀xP (x) ∨ Q(x) is the disjunction of ∀xP (x) and Q(x). In other words, it means (∀xP (x)) ∨ Q(x) rather than ∀x(P (x) ∨ Q(x)).

DEFINITION 3

Statements involving predicates and quantifiers are logically equivalent if and only if

they have the same truth value no matter which predicates are substituted into these

statements and which domain of discourse is used for the variables in these propositional functions.

We use the notation S ≡ T to indicate that two statements S and T involving predicates and quantifiers are logically equivalent.

Discrete Mathematics and Its Applications | 1 CHAPTER The Foundations: Logic and Proofs | 1.4 Predicates and Quantifiers的更多相关文章

  1. Discrete Mathematics and Its Applications | 1 CHAPTER The Foundations: Logic and Proofs | 1.3 Propositional Equivalences

    DEFINITION 1 A compound proposition that is always true,no matter what the truth values of the propo ...

  2. Discrete Mathematics and Its Applications | 1 CHAPTER The Foundations: Logic and Proofs | 1.2 Applications of Propositional Logic

    Translating English Sentences System Specifications Boolean Searches Logic Puzzles Logic Circuits

  3. Discrete Mathematics and Its Applications | 1 CHAPTER The Foundations: Logic and Proofs | 1.1 Propositional Logic

    propositional variables (or statement variables), letters used for propositional variables are p, q, ...

  4. 经典书Discrete.Mathematics上的大神

    版权声明:本文作者靖心,靖空间地址:http://blog.csdn.net/kenden23/,未经本作者同意不得转载. https://blog.csdn.net/kenden23/article ...

  5. 离散数学及其应用(Discrete Mathematica With Application 7th)学习笔记 第一章

    目前本人只进行到了第五章的章末补充练习,应该是从4月6号开始学习的,又是英文版,而且基本就下班回家抽2个小时左右去学,所以进度较慢. 由于本质是数学,除了一些程序处理和大计算量的问题,基本上一本草稿本 ...

  6. Linux新手必看:浅谈如何学习linux

    本文在Creative Commons许可证下发布 一.起步 首先,应该为自己创造一个学习linux的环境--在电脑上装一个linux或unix问题1:版本的选择 北美用redhat,欧洲用SuSE, ...

  7. 新手学习Linux之快速上手分析

    一.起步 首先,应该为自己创造一个学习linux的环境--在电脑上装一个linux或unix 问题1:版本的选择 北美用redhat,欧洲用SuSE,桌面mandrake较多,而debian是技术最先 ...

  8. [转载] Linux新手必看:浅谈如何学习linux

    本文转自 https://www.cnblogs.com/evilqliang/p/6247496.html 本文在Creative Commons许可证下发布 一.起步 首先,应该为自己创造一个学习 ...

  9. 计算机程序设计的史诗TAOCP

    倘若你去问一个木匠学徒:你需要什么样的工具进行工作,他可能会回答你:“我只要一把锤子和一个锯”.但是如果你去问一个老木工或者是大师级的建筑师,他会告诉你“我需要一些精确的工具”.由于计算机所解决的问题 ...

随机推荐

  1. Wannafly挑战赛22 B 字符路径 ( 拓扑排序+dp )

    链接:https://ac.nowcoder.com/acm/contest/160/B 来源:牛客网 题目描述 给一个含n个点m条边的有向无环图(允许重边,点用1到n的整数表示),每条边上有一个字符 ...

  2. Codeforces 981 共同点路径覆盖树构造 BFS/DP书架&最大值

    A /*Huyyt*/ #include<bits/stdc++.h> #define mem(a,b) memset(a,b,sizeof(a)) #define pb push_bac ...

  3. Spring AOP 在XML中声明切面

    转载地址:http://www.jianshu.com/p/43a0bc21805f 在XML中将一个Java类配置成一个切面: AOP元素 用途 <aop:advisor> 定义AOP通 ...

  4. SSM三大框架详细整合流程

    1.基本概念 1.1.Spring Spring是一个开源框架,Spring是于2003 年兴起的一个轻量级的Java 开发框架,由Rod Johnson 在其著作Expert One-On-One  ...

  5. jvm——class类文件的结构

    class类文件并不一定以磁盘的形式存在,也可以是由类加载器直接生成的二进制流,他其实是一种数据结构,类似于c语言结构体,这种数据结构只有两种数据类型:无符号数和表. 1.魔数:类似于文件拓展名,CA ...

  6. 【leetcode】1228.Missing Number In Arithmetic Progression

    题目如下: 解题思路:题目很简单.先对数组排序,根据最大值和最小值即可求出公差,然后遍历数组,计算相邻元素的差,如果差不等于公差,即表示数字缺失. 代码如下: class Solution(objec ...

  7. 【shell】文本按行逆序

    1.最简单的方法是使用tac [root ~]$ seq |tac 2.使用tr和awk. tr把换行符替换成自定义的分隔符,awk分解替换后的字符串,并逆序输出 [root ~]$ seq | tr ...

  8. 对 Promises/A+ 规范的研究 ------引用

    作为 Modern JavaScript 基础设施的一部分,Promises 对前端开发者而言异常重要.它是 async/await 语法的基础,是 JavaScript 中处理异步的标准形式.并且, ...

  9. python+selenium封装UI自动化框架

    seleinum框架 框架的思想:  解决我们测试过程中的问题:大量的重复步骤,用自动化来实现    1)配置和程序的分离    2)测试数据和程序的分离    3)不懂编程的人员可以方便使用:使用的 ...

  10. shiro框架学习-8-shiro缓存

    1. shiro进行认证授权时会查询数据库获取用户角色权限信息,每次登录都会去查询,这样对性能会又影响.可以设置缓存,查询时先去缓存中查找,缓存中没有再去数据库查询. 从shiro的架构图中可以看到有 ...