Discrete Mathematics and Its Applications | 1 CHAPTER The Foundations: Logic and Proofs | 1.4 Predicates and Quantifiers
The statements that describe valid input are known as preconditions and the conditions that the output should satisfy when the program has run are known as postconditions.
Universal quantification, which tells us that a predicate is true for every element under consideration,
Existential quantification, which tells us that there is one or more element under consideration for which the predicate is true.
DEFINITION 1
The universal quantification of P (x) is the statement “P (x) for all values of x in the domain.”
The notation ∀xP (x) denotes the universal quantification of P (x). Here ∀ is called the universal quantifier.
We read ∀xP (x) as “for all xP (x)” or “for every xP (x).”
An element for which P (x) is false is called a counterexample of ∀xP (x).

DEFINITION 2
The existential quantification of P (x) is the proposition “There exists an element x in the domain such that P (x).”
We use the notation ∃xP (x) for the existential quantification of P (x). Here ∃ is called the existential quantifier.

Binding Variables When a quantifier is used on the variable x, we say that this occurrence of the variable is bound.
An occurrence of a variable that is not bound by a quantifier or set equal to a particular value is said to be free.
All the variables that occur in a propositional function must be bound or set equal to a particular value to turn it into a proposition.
This can be done using a combination of universal quantifiers, existential quantifiers, and value assignments.
The part of a logical expression to which a quantifier is applied is called the scope of this quantifier. Consequently,
a variable is free if it is outside the scope of all quantifiers in the formula that specify this variable.
The uniqueness quantifier, denoted by ∃! or ∃1.
The notation ∃!xP (x) [or ∃1xP (x)] states “There exists a unique x such that P (x) is true.”
Other phrases for uniqueness quantification include “there is exactly one” and “there is one and only one.”
For instance, ∃!x(x − 1 = 0), where the domain is the set of real numbers, states that there is a unique real number x such that x − 1 = 0.
This is a true statement, as x = 1 is the unique real number such that x − 1 = 0.
Quantifiers with Restricted Domains
An abbreviated notation is often used to restrict the domain of a quantifier.
In this nota-tion, a condition a variable must satisfy is included after the quantifier.
Precedence of Quantifiers The quantifiers ∀ and ∃ have higher precedence than all logical operators from propositional calculus.
For example, ∀xP (x) ∨ Q(x) is the disjunction of ∀xP (x) and Q(x). In other words, it means (∀xP (x)) ∨ Q(x) rather than ∀x(P (x) ∨ Q(x)).
DEFINITION 3
Statements involving predicates and quantifiers are logically equivalent if and only if
they have the same truth value no matter which predicates are substituted into these
statements and which domain of discourse is used for the variables in these propositional functions.
We use the notation S ≡ T to indicate that two statements S and T involving predicates and quantifiers are logically equivalent.

Discrete Mathematics and Its Applications | 1 CHAPTER The Foundations: Logic and Proofs | 1.4 Predicates and Quantifiers的更多相关文章
- Discrete Mathematics and Its Applications | 1 CHAPTER The Foundations: Logic and Proofs | 1.3 Propositional Equivalences
DEFINITION 1 A compound proposition that is always true,no matter what the truth values of the propo ...
- Discrete Mathematics and Its Applications | 1 CHAPTER The Foundations: Logic and Proofs | 1.2 Applications of Propositional Logic
Translating English Sentences System Specifications Boolean Searches Logic Puzzles Logic Circuits
- Discrete Mathematics and Its Applications | 1 CHAPTER The Foundations: Logic and Proofs | 1.1 Propositional Logic
propositional variables (or statement variables), letters used for propositional variables are p, q, ...
- 经典书Discrete.Mathematics上的大神
版权声明:本文作者靖心,靖空间地址:http://blog.csdn.net/kenden23/,未经本作者同意不得转载. https://blog.csdn.net/kenden23/article ...
- 离散数学及其应用(Discrete Mathematica With Application 7th)学习笔记 第一章
目前本人只进行到了第五章的章末补充练习,应该是从4月6号开始学习的,又是英文版,而且基本就下班回家抽2个小时左右去学,所以进度较慢. 由于本质是数学,除了一些程序处理和大计算量的问题,基本上一本草稿本 ...
- Linux新手必看:浅谈如何学习linux
本文在Creative Commons许可证下发布 一.起步 首先,应该为自己创造一个学习linux的环境--在电脑上装一个linux或unix问题1:版本的选择 北美用redhat,欧洲用SuSE, ...
- 新手学习Linux之快速上手分析
一.起步 首先,应该为自己创造一个学习linux的环境--在电脑上装一个linux或unix 问题1:版本的选择 北美用redhat,欧洲用SuSE,桌面mandrake较多,而debian是技术最先 ...
- [转载] Linux新手必看:浅谈如何学习linux
本文转自 https://www.cnblogs.com/evilqliang/p/6247496.html 本文在Creative Commons许可证下发布 一.起步 首先,应该为自己创造一个学习 ...
- 计算机程序设计的史诗TAOCP
倘若你去问一个木匠学徒:你需要什么样的工具进行工作,他可能会回答你:“我只要一把锤子和一个锯”.但是如果你去问一个老木工或者是大师级的建筑师,他会告诉你“我需要一些精确的工具”.由于计算机所解决的问题 ...
随机推荐
- Atcoder Regular 097 相邻球交换目的递增DP
A /*Huyyt*/ #include<bits/stdc++.h> #define mem(a,b) memset(a,b,sizeof(a)) #define pb push_bac ...
- MegaPixImage插件代码(new MegaPixImage)
/** * Mega pixel image rendering library for iOS6 Safari * * Fixes iOS6 Safari's image file renderin ...
- canal 环境搭建 kafka Zookeeper安装(二)
第一步 创建Zookeeper 下载完成后 修改 Zookeeper中的 zoo.cfg 修改 dataDir .dataLogDir 集群模式 server.1=ServerIP:2888:3888 ...
- js-头部的下拉框出现与隐藏,注意加上stop??
效果: 主要代码:
- 结合webpack实现children子路由,抽离路由模块
demo结构 package.json.webpack.config.js.index.html与上一篇博客相同. main.js // 这是项目的入口js文件 // import $ from 'j ...
- 【深入理解CLR】2:细谈值类型的装箱和拆箱
装箱 总所周知,值类型是比引用类型更“轻型”的一种类型,因为它们不作为对象在托管堆中分配,不会被垃圾回收,也不通过指针来引用.但在许多情况下,都需要获取对值类型的一个实例的引用.例如,假定要创建一个A ...
- PHP 发邮件《转》
导读:PHP自带的mail()函数,是php内置发邮件的函数,该函数虽然简单,但是要想真正可以发邮件得有很复杂的配置.不适合新手,以及项目实际的应用的开发. php的mail()函数复杂配置,使得直接 ...
- 打开ubuntu终端,没有用户名显示,只剩下光标在闪
总结起来就是bash损坏了.bash是用户与操作系统内核交互的工具.bash损坏,则用户无法操作计算机. 推荐两个帖子: https://blog.csdn.net/u011128515/articl ...
- gdal test
https://blog.csdn.net/hb_programmer/article/details/81807699 gdal/ogr是一个光栅和矢量地理空间数据格式的翻译库,由开源地理空间基金会 ...
- 我的Android案例签到日历
2015年的Android案例之旅 案例八:签到日历 知识点: GridView的使用SQLite的使用 涉及文件: res->layout->activity_main.xml 主布局文 ...