Discrete Mathematics and Its Applications | 1 CHAPTER The Foundations: Logic and Proofs | 1.4 Predicates and Quantifiers
The statements that describe valid input are known as preconditions and the conditions that the output should satisfy when the program has run are known as postconditions.
Universal quantification, which tells us that a predicate is true for every element under consideration,
Existential quantification, which tells us that there is one or more element under consideration for which the predicate is true.
DEFINITION 1
The universal quantification of P (x) is the statement “P (x) for all values of x in the domain.”
The notation ∀xP (x) denotes the universal quantification of P (x). Here ∀ is called the universal quantifier.
We read ∀xP (x) as “for all xP (x)” or “for every xP (x).”
An element for which P (x) is false is called a counterexample of ∀xP (x).
DEFINITION 2
The existential quantification of P (x) is the proposition “There exists an element x in the domain such that P (x).”
We use the notation ∃xP (x) for the existential quantification of P (x). Here ∃ is called the existential quantifier.
Binding Variables When a quantifier is used on the variable x, we say that this occurrence of the variable is bound.
An occurrence of a variable that is not bound by a quantifier or set equal to a particular value is said to be free.
All the variables that occur in a propositional function must be bound or set equal to a particular value to turn it into a proposition.
This can be done using a combination of universal quantifiers, existential quantifiers, and value assignments.
The part of a logical expression to which a quantifier is applied is called the scope of this quantifier. Consequently,
a variable is free if it is outside the scope of all quantifiers in the formula that specify this variable.
The uniqueness quantifier, denoted by ∃! or ∃1.
The notation ∃!xP (x) [or ∃1xP (x)] states “There exists a unique x such that P (x) is true.”
Other phrases for uniqueness quantification include “there is exactly one” and “there is one and only one.”
For instance, ∃!x(x − 1 = 0), where the domain is the set of real numbers, states that there is a unique real number x such that x − 1 = 0.
This is a true statement, as x = 1 is the unique real number such that x − 1 = 0.
Quantifiers with Restricted Domains
An abbreviated notation is often used to restrict the domain of a quantifier.
In this nota-tion, a condition a variable must satisfy is included after the quantifier.
Precedence of Quantifiers The quantifiers ∀ and ∃ have higher precedence than all logical operators from propositional calculus.
For example, ∀xP (x) ∨ Q(x) is the disjunction of ∀xP (x) and Q(x). In other words, it means (∀xP (x)) ∨ Q(x) rather than ∀x(P (x) ∨ Q(x)).
DEFINITION 3
Statements involving predicates and quantifiers are logically equivalent if and only if
they have the same truth value no matter which predicates are substituted into these
statements and which domain of discourse is used for the variables in these propositional functions.
We use the notation S ≡ T to indicate that two statements S and T involving predicates and quantifiers are logically equivalent.
Discrete Mathematics and Its Applications | 1 CHAPTER The Foundations: Logic and Proofs | 1.4 Predicates and Quantifiers的更多相关文章
- Discrete Mathematics and Its Applications | 1 CHAPTER The Foundations: Logic and Proofs | 1.3 Propositional Equivalences
DEFINITION 1 A compound proposition that is always true,no matter what the truth values of the propo ...
- Discrete Mathematics and Its Applications | 1 CHAPTER The Foundations: Logic and Proofs | 1.2 Applications of Propositional Logic
Translating English Sentences System Specifications Boolean Searches Logic Puzzles Logic Circuits
- Discrete Mathematics and Its Applications | 1 CHAPTER The Foundations: Logic and Proofs | 1.1 Propositional Logic
propositional variables (or statement variables), letters used for propositional variables are p, q, ...
- 经典书Discrete.Mathematics上的大神
版权声明:本文作者靖心,靖空间地址:http://blog.csdn.net/kenden23/,未经本作者同意不得转载. https://blog.csdn.net/kenden23/article ...
- 离散数学及其应用(Discrete Mathematica With Application 7th)学习笔记 第一章
目前本人只进行到了第五章的章末补充练习,应该是从4月6号开始学习的,又是英文版,而且基本就下班回家抽2个小时左右去学,所以进度较慢. 由于本质是数学,除了一些程序处理和大计算量的问题,基本上一本草稿本 ...
- Linux新手必看:浅谈如何学习linux
本文在Creative Commons许可证下发布 一.起步 首先,应该为自己创造一个学习linux的环境--在电脑上装一个linux或unix问题1:版本的选择 北美用redhat,欧洲用SuSE, ...
- 新手学习Linux之快速上手分析
一.起步 首先,应该为自己创造一个学习linux的环境--在电脑上装一个linux或unix 问题1:版本的选择 北美用redhat,欧洲用SuSE,桌面mandrake较多,而debian是技术最先 ...
- [转载] Linux新手必看:浅谈如何学习linux
本文转自 https://www.cnblogs.com/evilqliang/p/6247496.html 本文在Creative Commons许可证下发布 一.起步 首先,应该为自己创造一个学习 ...
- 计算机程序设计的史诗TAOCP
倘若你去问一个木匠学徒:你需要什么样的工具进行工作,他可能会回答你:“我只要一把锤子和一个锯”.但是如果你去问一个老木工或者是大师级的建筑师,他会告诉你“我需要一些精确的工具”.由于计算机所解决的问题 ...
随机推荐
- CodeForces - 841D Leha and another game about graph
给出一个连通图,并给每个点赋一个d值0或1或-1,要求选出一个边的集合,使得所有的点i要么d[i] == -1,要么 dgree[i] % 2 == d[i],dgree[i]代表i结点的度数. 考虑 ...
- canvas在高倍屏下变模糊的处理办法
因为canvas不是矢量图,而是像图片一样是位图模式的.如果不做Retina屏适配的话,例如二倍屏,浏览器就会以2个像素点的宽度来渲染一个像素,该canvas在Retina屏幕下相当于占据了2倍的空间 ...
- WebApi 接口参数:传参详解
前言:还记得刚使用WebApi那会儿,被它的传参机制折腾了好久,查阅了半天资料.如今,使用WebApi也有段时间了,今天就记录下API接口传参的一些方式方法,算是一个笔记,也希望能帮初学者少走弯路.本 ...
- json与string与map的理解
json是一种特殊格式的string字符串,也就是json也是string类型,只是这种string是有格式的,那么他的格式就是类似map的格式[key:value] 举例子: Map map = r ...
- dijkstra算法之优先队列优化
github地址:https://github.com/muzhailong/dijkstra-PriorityQueue 1.题目 分析与解题思路 dijkstra算法是典型的用来解决单源最短路径的 ...
- 查看mysql数据库容量大小
第一种情况:查询所有数据库的总大小,方法如下: mysql> use information_schema; mysql> select concat(round(sum(DATA_LE ...
- CSS中filter属性的使用
filter 属性定义了元素的可视效果 blur 给图像设置高斯模糊."radius"一值设定高斯函数的标准差,或者是屏幕上以多少像素融在一起, 所以值越大越模糊. 如果没有设定值 ...
- SP Flash Tool版本对应MTK处理器型号(SP Flash Tool 版本速查)
SP Flash Tool v3.1224.0.100 MT6516,MT6573,MT6573,MT6575,MT6575,MT6577, SP Flash Tool v3.1332.0.187 M ...
- AQS源码分析笔记
经过昨晚的培训.对AQS源码的理解有所加强,现在写个小笔记记录一下 同样,还是先写个测试代码,debug走一遍流程, 然后再总结一番即可. 测试代码 import java.util.concurre ...
- Java对数组和列表的排序1.8新特性
Java对数组列表的排序 数组 Integer[] a = new Integer[] { 1, 2, 3, 4, 5, 6, 9, 8, 7, 4, 5, 5, 6, 6 }; Arrays.sor ...