Orz

送分比较慷慨的一道题,疯狂特判能拿不少分。

对于$a>0,b>0$的情况:

用exgcd求出方程通解,然后通过操作得到最小正整数解和最大正整数解

他们以及他们之间的解满足等差数列性质,小学数奥求项数即可

(其实就是(末项-首项)/公差+1)

其他情况特判掉或者转化为可处理情况即可(比如全负),不多说,代码里写的还是比较清晰的

//#define XR
#include<cstdio>
#include<iostream>
#include<cstring>
using namespace std;
int T,a,b,c,x,y;
//void exgcd(int a,int b,int &x) int exgcd(int a,int b,int &x,int &y,int c)
{
if(!b)
{
x=c/a;
y=;
return a;
}
int g=exgcd(b,a%b,y,x,c);
y-=a/b*x;
return g;
}
void work()
{
scanf("%d%d%d",&a,&b,&c);x=y=;
if(a==&&b==)
{
if(c==)
{
puts("ZenMeZheMeDuo");
return ;
}
else
{
puts("");
return ;
}
}
if(a==||b==)
{
long long now=a+b;
if(c==||(c%now==&&(long long)now*c>))
{
puts("ZenMeZheMeDuo");
return ;
}
else
{
puts("");
return ;
}
}
if((a>&&b>&&c<=)||(a<&&b<&&c>=)||(a>&&b>&&a+b>c)||(a<&&b<&&a+b<c))
{
puts("");
return ;
}
if(a==b&&a==)
{
if(c>)puts("ZenMeZheMeDuo");
else if(c<=)puts("");
else cout<<c-<<endl;
return ;
}
if(a+b==c)
{
puts("");
return ;
}
if(a<&&b<)a=-a,b=-b,c=-c;
int GCD=exgcd(a,b,x,y,c);//cout<<GCD<<endl;
if(c%GCD!=)
{
puts("");
return ;
} if((long long)a*b<)
{ puts("ZenMeZheMeDuo");
return ;
}
a/=GCD;b/=GCD;c/=GCD;x%=b;
while(x<=)x+=b;
y=(c-a*x)/b;
int ym=y%a;
while(ym<=)ym+=a;int ans;
if(ym>y)ans=;
else ans=(y-ym)/a+;
if(ans>)puts("ZenMeZheMeDuo");
else cout<<ans<<endl; }
void test()
{
scanf("%d%d",&a,&b);
exgcd(a,b,x,y,c);
cout<<x<<' '<<y<<endl;
}
int main()
{
// cout<<(18%(-5))<<endl;
//while(1)test();
#ifdef XR
freopen("data.in","r",stdin);
freopen("data.out","w",stdout);
#endif
scanf("%d",&T);
while(T--)work();
return ;
}

[7.22NOIP模拟测试7]方程的解 题解(扩展欧几里得)的更多相关文章

  1. Intel Code Challenge Final Round (Div. 1 + Div. 2, Combined) C.Ray Tracing (模拟或扩展欧几里得)

    http://codeforces.com/contest/724/problem/C 题目大意: 在一个n*m的盒子里,从(0,0)射出一条每秒位移为(1,1)的射线,遵从反射定律,给出k个点,求射 ...

  2. poj 2142 扩展欧几里得解ax+by=c

    原题实际上就是求方程a*x+b*y=d的一个特解,要求这个特解满足|x|+|y|最小 套模式+一点YY就行了 总结一下这类问题的解法: 对于方程ax+by=c 设tm=gcd(a,b) 先用扩展欧几里 ...

  3. poj 1061 扩展欧几里得解同余方程(求最小非负整数解)

    题目可以转化成求关于t的同余方程的最小非负数解: x+m*t≡y+n*t (mod L) 该方程又可以转化成: k*L+(n-m)*t=x-y 利用扩展欧几里得可以解决这个问题: eg:对于方程ax+ ...

  4. 扩展欧几里得 求ax+by == n的非负整数解个数

    求解形如ax+by == n (a,b已知)的方程的非负整数解个数时,需要用到扩展欧几里得定理,先求出最小的x的值,然后通过处理剩下的区间长度即可得到答案. 放出模板: ll gcd(ll a, ll ...

  5. Poj 1061 青蛙的约会(扩展欧几里得解线性同余式)

    一.Description 两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面.它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止.可是它们出发之前忘记了一件很重要 ...

  6. 【64测试20161112】【Catalan数】【数论】【扩展欧几里得】【逆】

    Problem: n个人(偶数)排队,排两行,每一行的身高依次递增,且第二行的人的身高大于对应的第一行的人,问有多少种方案.mod 1e9+9 Solution: 这道题由1,2,5,14 应该想到C ...

  7. poj 2891 扩展欧几里得迭代解同余方程组

    Reference: http://www.cnblogs.com/ka200812/archive/2011/09/02/2164404.html 之前说过中国剩余定理传统解法的条件是m[i]两两互 ...

  8. Acwing-203-同余方程(扩展欧几里得)

    链接: https://www.acwing.com/problem/content/205/ 题意: 求关于x的同余方程 ax ≡ 1(mod b) 的最小正整数解. 思路: 首先:扩展欧几里得推导 ...

  9. 扩展欧几里得(exgcd)与同余详解

    exgcd入门以及同余基础 gcd,欧几里得的智慧结晶,信息竞赛的重要算法,数论的...(编不下去了 讲exgcd之前,我们先普及一下同余的性质: 若,那么 若,,且p1,p2互质, 有了这三个式子, ...

随机推荐

  1. <Jmeter入门不放弃>之<2.常用功能>

    大家这里参考学习的时候,我就不在这里配截图了,因为需要你打开工具根据文档自己去找,才有印象,大家一定要启动JMeter!跟着理解操作 一.测试计划 用来描述一个性能测试,所有内容都是基于这个计划,这谁 ...

  2. AcWing 208. 开关问题 (高斯消元+状压)打卡

    有N个相同的开关,每个开关都与某些开关有着联系,每当你打开或者关闭某个开关的时候,其他的与此开关相关联的开关也会相应地发生变化,即这些相联系的开关的状态如果原来为开就变为关,如果为关就变为开. 你的目 ...

  3. ASP.NET MVC 分页之 局部视图

    using System; using System.Collections.Generic; using System.Linq; using System.Security.Cryptograph ...

  4. Java方式bean的注入以及自动配置

    Java配置 Java配置的本质上,就是使用一个Java类去代替xml配置,这种配置方式在目前最主流的Spring Boot中得到了广泛的使用.1.引入相关Spring相关依赖 2.创建Java配置类 ...

  5. legend2---17、legend2里面怎么面向对象

    legend2---17.legend2里面怎么面向对象 一.总结 一句话总结: mvc本身挺优:本身mvc的开发模式,就算是面向过程下也还行,如果面向对象那就更加棒了 实体类无需属性:由于php的生 ...

  6. IE8 indexOf

    因为ie8中的js数组没有indexOf方法,所以使用之前要先加入这段js代码 if (!Array.prototype.indexOf) { Array.prototype.indexOf = fu ...

  7. 59、salesforce实现数据的批量处理

    批处理,往自己的邮箱发一封邮件,批处理采用异步的处理方式处理数据,最多可以处理5000万条数据 global with sharing class MerchandiseBatch implement ...

  8. Spring MVC 常用注解 和session界面渲染取值

    @RequestParams name 修饰当前形参的属性 value 和name属性一样 也是修饰当前属性 defaultValue 给属性设置一个默认值 默认属性 required 必备属性 1. ...

  9. python - 小米推送使用

    1. 小米文档及SDK下载 1.文档介绍 https://dev.mi.com/console/doc/detail?pId=863 sdk说明: 2.开发者需要登录开发者网站(申请AppID, Ap ...

  10. 2019ccpc网络赛hdu6703 array(线段树)

    array 题目传送门 解题思路 操作1是把第pos个位置上的数加上\(10^7\),操作2是找到区间[1,r]中没有且大于k的最小的数.注意到k的范围是小于等于n的,且n的范围是\(10^5\),远 ...