AcWing 196. 质数距离(筛法+离散化)打卡
给定两个整数L和U,你需要在闭区间[L,U]内找到距离最接近的两个相邻质数C1和C2(即C2-C1是最小的),如果存在相同距离的其他相邻质数对,则输出第一对。
同时,你还需要找到距离最远的两个相邻质数D1和D2(即D1-D2是最大的),如果存在相同距离的其他相邻质数对,则输出第一对。
输入格式
每行输入两个整数L和U,其中L和U的差值不会超过1000000。
输出格式
对于每个L和U ,输出一个结果,结果占一行。
结果包括距离最近的相邻质数对和距离最远的相邻质数对。(具体格式参照样例)
如果L和U之间不存在质数对,则输出“There are no adjacent primes.”。
数据范围
1≤L<U≤231−11≤L<U≤231−1
输入样例:
2 17
14 17
输出样例:
2,3 are closest, 7,11 are most distant.题意:找到给定范围内相邻质数最大和最小的质数对
There are no adjacent primes.
思路:给定的l,r的范围都达到了1e9,我们直接筛法存不了这么大,但是他的r-l<=1e6,这个时候我们就应该有数学上的抓关键词分析的想法,从这下手
我们可以知道,每个合数肯定是由一个不大于sqrt(n)的素数和一个数的乘积化来的,那么我们就可以求出1-sqrt(r)的素数然后枚举素数再用筛法分别乘以一个数
达到的数说明就是一个合数,没有被乘到标记的说明就是素数
#include <bits/stdc++.h>
using namespace std;
#define ll long long
const int N=1e5+,M=1e6+;
ll prime[N],a[N];
int p[M];
int zs(int n)//判定质数
{
memset(prime,,sizeof(prime));
memset(a,,sizeof(a));
for(int i=;i<=n;i++)
{
if (!prime[i])
a[++a[]]=i;
for(int j=i;j<=n/i;j++)
prime[i*j]=;
}
}
int main()
{
int l,r;
while(cin>>l>>r)
{
zs(sqrt(r));
memset(p,,sizeof(p));
if (l==)//1要特判啊
p[]=;
for(int i=;i<=a[];i++)
{
for(int j=ceil(l/a[i]);j<=floor(r/a[i]);j++)//celi为向上取整,floor为向下取整.
if (j!=)
p[a[i]*j-l]=;//统一减去l
}
int as=,max_ans=,min_ans=1e9;
pair<int,int> ans_a,ans_b;
for(int i=l;i<=r;i++)
if (!p[i-l])
{
if (as)
{
if (max_ans<i-as)
{
ans_a.first=as;
ans_a.second=i;
max_ans=i-as;
}
if (min_ans>i-as)
{
ans_b.first=as;
ans_b.second=i;
min_ans=i-as;
}
}
as=i;
}
if (max_ans== && min_ans==1e9)
printf("There are no adjacent primes.\n");//没有素数
else
printf("%d,%d are closest, %d,%d are most distant.\n",ans_b.first,ans_b.second,ans_a.first,ans_a.second);
}
}
AcWing 196. 质数距离(筛法+离散化)打卡的更多相关文章
- ACwing 196. 质数距离
#include <bits/stdc++.h> using namespace std; , M = ; int v[M]; long long prime[N],prim[N]; ; ...
- POJ2689 [质数距离] 题解
质数距离 题目TP门 题目描述 给定两个整数L和R,你需要在闭区间[L,R]内找到距离最接近的两个相邻质数C1和C2(即C2-C1是最小的),如果存在相同距离的其他相邻质数对,则输出第一对. 同时,你 ...
- AcWing 197. 阶乘分解 (筛法)打卡
给定整数 N ,试把阶乘 N! 分解质因数,按照算术基本定理的形式输出分解结果中的 pipi 和 cici 即可. 输入格式 一个整数N. 输出格式 N! 分解质因数后的结果,共若干行,每行一对pi, ...
- AcWing 868. 筛质数 线性筛法
#include <iostream> #include <algorithm> using namespace std; ; int primes[N], cnt; bool ...
- acwing 173. 矩阵距离(bfs)
给定一个N行M列的01矩阵A,A[i][j] 与 A[k][l] 之间的曼哈顿距离定义为: dist(A[i][j],A[k][l])=|i−k|+|j−l|dist(A[i][j],A[k][l]) ...
- AcWing 最短Hamilton距离 (状压DP)
题目描述 给定一张 n 个点的带权无向图,点从 0∼n−1 标号,求起点 0 到终点 n−1 的最短 Hamilton 路径. Hamilton 路径的定义是从 0 到 n−1 不重不漏地经过每个点恰 ...
- [51nod1181]质数中的质数(素数筛法)
解题关键: 注意下标 #include<bits/stdc++.h> #define maxn 10000002 using namespace std; typedef long lon ...
- AcWing P173 矩阵距离 题解
Analysis 就是一个裸的广搜,每次从是1的点开始找就好啦~~~ #include<iostream> #include<cstdio> #include<cstri ...
- AcWing 142. 前缀统计 字典树打卡
给定N个字符串S1,S2…SNS1,S2…SN,接下来进行M次询问,每次询问给定一个字符串T,求S1S1-SNSN中有多少个字符串是T的前缀. 输入字符串的总长度不超过106106,仅包含小写字母. ...
随机推荐
- Hibernate Session 4种对象状态
站在持久化的角度.Hibernate把对象分为4中状态. 临时状态. 持久化状态.游离状态.删除状态. 1:Save()方法: //这个是验证:1:save方法使临时对象------>变成持久化 ...
- oracle查看数据库版本和字符集
以下以oralce为例, 查看数据库版本? 可以在pl/sql上执行:select * from v$version; 查看字符集? select * from v$nls_parameters; s ...
- POJ 2808 校门外的树(线段树入门)
题目描述 某校大门外长度为L的马路上有一排树,每两棵相邻的树之间的间隔都是1米.我们可以把马路看成一个数轴,马路的一端在数轴0的位置,另一端在L的位置:数轴上的每个整数点,即0,1,2,……,L,都种 ...
- Android 模糊搜索rawquery bind or column index out of range: handle 0x2fb180 报错
做模糊搜索时,出现了 bind or column index out of range: handle 0x2fb180 报错 public Cursor getTitle(String word ...
- HTML5: 目录
ylbtech-HTML5: 目录 1.返回顶部 1. http://www.runoob.com/html/html5-intro.html 2. http://www.w3school.com.c ...
- <读书笔记>《JS DOM编程艺术》
2016/03/04 12:00 第一二章:JS的简史以及基本语法 1.P11 2.variable 3.P13 等于 4.P13 5.P14 转义字符 6.关联数组不是一个好习惯 7.P18 ...
- 2019牛客多校第⑨场H Cutting Bamboos(主席树+二分)
原题:https://ac.nowcoder.com/acm/contest/889/H 题意: 给你一些竹子,q个询问,问你从第l到第r个竹子,如果你要用y次砍完它,并且每次砍下来的长度是相同的,问 ...
- (转)Adaboost
基本原理 Adaboost算法基本原理就是将多个弱分类器(弱分类器一般选用单层决策树)进行合理的结合,使其成为一个强分类器. Adaboost采用迭代的思想,每次迭代只训练一个弱分类器,训练好的弱分类 ...
- java jpa 实体关联
关联关系: 1. One to One 2. One to Many 3. Many to One 4 Many to Many 映射: 延迟加载 @Basic(fetch = FetchType.L ...
- NOIp2018 爆零记
几个月没动博客了,原以为NOIp之后能有个喜报让我重新更博的 我就讲讲自己的爆零经历吧 Day 0: 洛谷签到第99天,明天签到第100天, 吉利得很(flag已立) 去年第一次参加NOIp,那次Da ...