Codeforces Round #581 (Div. 2) C. Anna, Svyatoslav and Maps (Floyd 算法,最短路)
C. Anna, Svyatoslav and Maps
time limit per test2 seconds
memory limit per test256 megabytes
inputstandard input
outputstandard output
The main characters have been omitted to be short.
You are given a directed unweighted graph without loops with n vertexes and a path in it (that path is not necessary simple) given by a sequence p1,p2,…,pm of m vertexes; for each 1≤i<m there is an arc from pi to pi+1.
Define the sequence v1,v2,…,vk of k vertexes as good, if v is a subsequence of p, v1=p1, vk=pm, and p is one of the shortest paths passing through the vertexes v1, …, vk in that order.
A sequence a is a subsequence of a sequence b if a can be obtained from b by deletion of several (possibly, zero or all) elements. It is obvious that the sequence p is good but your task is to find the shortest good subsequence.
If there are multiple shortest good subsequences, output any of them.
Input
The first line contains a single integer n (2≤n≤100) — the number of vertexes in a graph.
The next n lines define the graph by an adjacency matrix: the j-th character in the i-st line is equal to 1 if there is an arc from vertex i to the vertex j else it is equal to 0. It is guaranteed that the graph doesn't contain loops.
The next line contains a single integer m (2≤m≤106) — the number of vertexes in the path.
The next line contains m integers p1,p2,…,pm (1≤pi≤n) — the sequence of vertexes in the path. It is guaranteed that for any 1≤i<m there is an arc from pi to pi+1.
Output
In the first line output a single integer k (2≤k≤m) — the length of the shortest good subsequence. In the second line output k integers v1, …, vk (1≤vi≤n) — the vertexes in the subsequence. If there are multiple shortest subsequences, print any. Any two consecutive numbers should be distinct.
Examples
inputCopy
4
0110
0010
0001
1000
4
1 2 3 4
outputCopy
3
1 2 4
inputCopy
4
0110
0010
1001
1000
20
1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
outputCopy
11
1 2 4 2 4 2 4 2 4 2 4
inputCopy
3
011
101
110
7
1 2 3 1 3 2 1
outputCopy
7
1 2 3 1 3 2 1
inputCopy
4
0110
0001
0001
1000
3
1 2 4
outputCopy
2
1 4
Note
Below you can see the graph from the first example:
The given path is passing through vertexes 1, 2, 3, 4. The sequence 1−2−4 is good because it is the subsequence of the given path, its first and the last elements are equal to the first and the last elements of the given path respectively, and the shortest path passing through vertexes 1, 2 and 4 in that order is 1−2−3−4. Note that subsequences 1−4 and 1−3−4 aren't good because in both cases the shortest path passing through the vertexes of these sequences is 1−3−4.
In the third example, the graph is full so any sequence of vertexes in which any two consecutive elements are distinct defines a path consisting of the same number of vertexes.
In the fourth example, the paths 1−2−4 and 1−3−4 are the shortest paths passing through the vertexes 1 and 4.
题意:
给你了一个含有n个节点的有向图,
和一个序列p,
让你找一个最小的序列v,使其v[1]=p[1] ,v[end]=p[end] ,并且 v 中节点再遍历的过程中,p序列是最短路序列之一。
思路:
用Floyd 算法,nnn 算出任意两个的最短路径。
然后处理p序列,
以一个开始位st 向后 找节点now 是否满足 now -st 满足 p[st] 到 p[now] 的最短路径距离。
如果满足就把now加入一个deque中待用,同时删除掉当前deque中已有的数,
否则就用deque中的数代替st,重复此操作。
细节见代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <vector>
#include <iomanip>
#define ALL(x) (x).begin(), (x).end()
#define sz(a) int(a.size())
#define all(a) a.begin(), a.end()
#define rep(i,x,n) for(int i=x;i<n;i++)
#define repd(i,x,n) for(int i=x;i<=n;i++)
#define pii pair<int,int>
#define pll pair<long long ,long long>
#define gbtb ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
#define MS0(X) memset((X), 0, sizeof((X)))
#define MSC0(X) memset((X), '\0', sizeof((X)))
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define eps 1e-6
#define gg(x) getInt(&x)
#define chu(x) cout<<"["<<#x<<" "<<(x)<<"]"<<endl
using namespace std;
typedef long long ll;
ll gcd(ll a, ll b) {return b ? gcd(b, a % b) : a;}
ll lcm(ll a, ll b) {return a / gcd(a, b) * b;}
ll powmod(ll a, ll b, ll MOD) {ll ans = 1; while (b) {if (b % 2)ans = ans * a % MOD; a = a * a % MOD; b /= 2;} return ans;}
inline void getInt(int* p);
const int maxn = 1000010;
const int inf = 0x3f3f3f3f;
/*** TEMPLATE CODE * * STARTS HERE ***/
char s[105][105];
int n;
int m;
int a[maxn];
int cnt[105][105];
int dis[105][105];
int main()
{
//freopen("D:\\common_text\\code_stream\\in.txt","r",stdin);
//freopen("D:\\common_text\\code_stream\\out.txt","w",stdout);
scanf("%d", &n);
repd(i, 1, n)
{
scanf("%s", s[i] + 1);
}
scanf("%d", &m);
repd(i, 1, m)
{
scanf("%d", &a[i]);
}
repd(i, 1, n)
{
repd(j, 1, n)
{
dis[i][j] = inf;
}
dis[i][i] = 0;
}
repd(i, 1, n)
{
repd(j, 1, n)
{
// cout<<s[i][j]<<" ";
if (s[i][j] == '1')
{
dis[i][j] = 1;
}
}
// cout<<endl;
}
repd(k, 1, n)
{
repd(i, 1, n)
{
repd(j, 1, n)
{
if (dis[i][k] + dis[k][j] < dis[i][j])
{
dis[i][j] = dis[i][k] + dis[k][j];
}
}
}
}
// repd(i,1,n)
// {
// repd(j,1,n)
// {
// cout<<dis[i][j]<<" ";
// }
// cout<<endl;
// }
deque<int> q;
while (!q.empty())
{
q.pop_back();
}
std::vector<int> ans;
ans.clear();
int now = 2;
int start = 1;
while (now <= m)
{
int dist = now - start;
if (dist == dis[a[start]][a[now]])
{
if (!q.empty())
{
q.pop_front();
}
q.push_back(now);
now++;
} else
{
ans.push_back(a[start]);
if (!q.empty())
{
start = q.front();
q.pop_front();
}
}
// cout << sz(q) << endl;
}
ans.push_back(a[start]);
if (ans[sz(ans) - 1] != a[m])
{
ans.push_back(a[m]);
}
cout << sz(ans) << endl;
for (auto x : ans)
{
cout << x << " ";
}
cout << endl;
return 0;
}
inline void getInt(int* p) {
char ch;
do {
ch = getchar();
} while (ch == ' ' || ch == '\n');
if (ch == '-') {
*p = -(getchar() - '0');
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 - ch + '0';
}
}
else {
*p = ch - '0';
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 + ch - '0';
}
}
}
Codeforces Round #581 (Div. 2) C. Anna, Svyatoslav and Maps (Floyd 算法,最短路)的更多相关文章
- Codeforces Round #581 (Div. 2)-E. Natasha, Sasha and the Prefix Sums-动态规划+组合数学
Codeforces Round #581 (Div. 2)-E. Natasha, Sasha and the Prefix Sums-动态规划+组合数学 [Problem Description] ...
- Codeforces Round #581 (Div. 2)
A:暴力. #include<cstdio> #include<cstring> #include<iostream> #include<algorithm& ...
- 01串LIS(固定串思维)--Kirk and a Binary String (hard version)---Codeforces Round #581 (Div. 2)
题意:https://codeforc.es/problemset/problem/1204/D2 给你一个01串,如:0111001100111011101000,让你改这个串(使0尽可能多,任意 ...
- D2. Kirk and a Binary String (hard version) D1 Kirk and a Binary String (easy version) Codeforces Round #581 (Div. 2) (实现,构造)
D2. Kirk and a Binary String (hard version) time limit per test1 second memory limit per test256 meg ...
- Codeforces Round #581 (Div. 2) B. Mislove Has Lost an Array (贪心)
B. Mislove Has Lost an Array time limit per test1 second memory limit per test256 megabytes inputsta ...
- Codeforces Round #581 (Div. 2)A BowWow and the Timetable (思维)
A. BowWow and the Timetable time limit per test1 second memory limit per test256 megabytes inputstan ...
- Codeforces Round #581 (Div. 2)D(思维,构造,最长非递减01串)
#define HAVE_STRUCT_TIMESPEC#include<bits/stdc++.h>using namespace std;char s[100007];int main ...
- Codeforces Round #406 (Div. 1) B. Legacy 线段树建图跑最短路
B. Legacy 题目连接: http://codeforces.com/contest/786/problem/B Description Rick and his co-workers have ...
- codeforces 1204C Anna, Svyatoslav and Maps(floyd+dp)
题目链接:http://codeforces.com/problemset/problem/1204/C 给定一组序列,P1,P2,P3...Pm,这是一组合法路径的序列,即任意的Pi和Pi+1之间有 ...
随机推荐
- 【转】Linux curl命令详解
[From]https://www.cnblogs.com/duhuo/p/5695256.html 命令:curl 在Linux中curl是一个利用URL规则在命令行下工作的文件传输工具,可以说是一 ...
- 【HANA系列】SAP HANA SQL计算某日期是当月的第几天
公众号:SAP Technical 本文作者:matinal 原文出处:http://www.cnblogs.com/SAPmatinal/ 原文链接:[HANA系列]SAP HANA SQL计算某日 ...
- PJzhang:网络数据单位小比特
猫宁!!! 参考链接:https://blog.csdn.net/qq_38880380/article/details/79887704 https://www.cnblogs.com/Flycho ...
- 【JulyEdu-Python基础】第 1 课:入门基础
一些学习资源的收集: 可汗学院 视频 公开课 Grossin 编程教室: 一个非常简单,对初学者非常友好的教程和在线联系 廖雪峰教程 书籍: Python核心编程: 这本书应该是最清楚.最深入全面的书 ...
- MVC、MVP、MVVM模式的概念与区别
1. MVC框架 MVC全名是Model View Controller,是模型(model)-视图(view)-控制器(controller)的缩写,一种软件设计典范,用一种业务逻辑.数据.界面显示 ...
- 关于Linux文本处理“三剑客”的一些小操作。
Linux文本处理“三剑客”,即grep.sed.awk,这是Linux中最核心 的3个命令. 一.首先做个简单的介绍: 1.awk:linux三剑客老大,过滤,输出内容,一门语言.NR代表行号. 2 ...
- VisualBasic文件与目录管理FileSystem 类
注解 下表列出了涉及 My.Computer.FileSystem 对象的任务示例. 功能 查看 从文本文件读取 如何:读取文本文件 从带分隔符的文本文件中读取 如何:读取逗号分隔的文本文件 从固定宽 ...
- python 学习笔记三 (函数)
1.把函数视为对象 def factorial(n): '''return n!''' return 1 if n < 2 else n*factorial(n-1) print(factori ...
- 面试35-删除字符串重复字符-删除出现在第二个字符串中的字符-第一个只出现一次的字符-hash表计数
#include<iostream>#include<algorithm>#include<functional>using namespace std;char ...
- qt webengineview 加载本地资源方式
一.如果把资源添加到本地资源qrc库里了,请使用 ui->preview->setUrl(QUrl("qrc:/HelloWorld2.html")): 二.如果没有现 ...