C. Anna, Svyatoslav and Maps

time limit per test2 seconds

memory limit per test256 megabytes

inputstandard input

outputstandard output

The main characters have been omitted to be short.

You are given a directed unweighted graph without loops with n vertexes and a path in it (that path is not necessary simple) given by a sequence p1,p2,…,pm of m vertexes; for each 1≤i<m there is an arc from pi to pi+1.

Define the sequence v1,v2,…,vk of k vertexes as good, if v is a subsequence of p, v1=p1, vk=pm, and p is one of the shortest paths passing through the vertexes v1, …, vk in that order.

A sequence a is a subsequence of a sequence b if a can be obtained from b by deletion of several (possibly, zero or all) elements. It is obvious that the sequence p is good but your task is to find the shortest good subsequence.

If there are multiple shortest good subsequences, output any of them.

Input

The first line contains a single integer n (2≤n≤100) — the number of vertexes in a graph.

The next n lines define the graph by an adjacency matrix: the j-th character in the i-st line is equal to 1 if there is an arc from vertex i to the vertex j else it is equal to 0. It is guaranteed that the graph doesn't contain loops.

The next line contains a single integer m (2≤m≤106) — the number of vertexes in the path.

The next line contains m integers p1,p2,…,pm (1≤pi≤n) — the sequence of vertexes in the path. It is guaranteed that for any 1≤i<m there is an arc from pi to pi+1.

Output

In the first line output a single integer k (2≤k≤m) — the length of the shortest good subsequence. In the second line output k integers v1, …, vk (1≤vi≤n) — the vertexes in the subsequence. If there are multiple shortest subsequences, print any. Any two consecutive numbers should be distinct.

Examples

inputCopy

4

0110

0010

0001

1000

4

1 2 3 4

outputCopy

3

1 2 4

inputCopy

4

0110

0010

1001

1000

20

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

outputCopy

11

1 2 4 2 4 2 4 2 4 2 4

inputCopy

3

011

101

110

7

1 2 3 1 3 2 1

outputCopy

7

1 2 3 1 3 2 1

inputCopy

4

0110

0001

0001

1000

3

1 2 4

outputCopy

2

1 4

Note

Below you can see the graph from the first example:

The given path is passing through vertexes 1, 2, 3, 4. The sequence 1−2−4 is good because it is the subsequence of the given path, its first and the last elements are equal to the first and the last elements of the given path respectively, and the shortest path passing through vertexes 1, 2 and 4 in that order is 1−2−3−4. Note that subsequences 1−4 and 1−3−4 aren't good because in both cases the shortest path passing through the vertexes of these sequences is 1−3−4.

In the third example, the graph is full so any sequence of vertexes in which any two consecutive elements are distinct defines a path consisting of the same number of vertexes.

In the fourth example, the paths 1−2−4 and 1−3−4 are the shortest paths passing through the vertexes 1 and 4.

题意:

给你了一个含有n个节点的有向图,

和一个序列p,

让你找一个最小的序列v,使其v[1]=p[1] ,v[end]=p[end] ,并且 v 中节点再遍历的过程中,p序列是最短路序列之一。

思路:

用Floyd 算法,nnn 算出任意两个的最短路径。

然后处理p序列,

以一个开始位st 向后 找节点now 是否满足 now -st 满足 p[st] 到 p[now] 的最短路径距离。

如果满足就把now加入一个deque中待用,同时删除掉当前deque中已有的数,

否则就用deque中的数代替st,重复此操作。

细节见代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <vector>
#include <iomanip>
#define ALL(x) (x).begin(), (x).end()
#define sz(a) int(a.size())
#define all(a) a.begin(), a.end()
#define rep(i,x,n) for(int i=x;i<n;i++)
#define repd(i,x,n) for(int i=x;i<=n;i++)
#define pii pair<int,int>
#define pll pair<long long ,long long>
#define gbtb ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
#define MS0(X) memset((X), 0, sizeof((X)))
#define MSC0(X) memset((X), '\0', sizeof((X)))
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define eps 1e-6
#define gg(x) getInt(&x)
#define chu(x) cout<<"["<<#x<<" "<<(x)<<"]"<<endl
using namespace std;
typedef long long ll;
ll gcd(ll a, ll b) {return b ? gcd(b, a % b) : a;}
ll lcm(ll a, ll b) {return a / gcd(a, b) * b;}
ll powmod(ll a, ll b, ll MOD) {ll ans = 1; while (b) {if (b % 2)ans = ans * a % MOD; a = a * a % MOD; b /= 2;} return ans;}
inline void getInt(int* p);
const int maxn = 1000010;
const int inf = 0x3f3f3f3f;
/*** TEMPLATE CODE * * STARTS HERE ***/
char s[105][105];
int n;
int m;
int a[maxn];
int cnt[105][105];
int dis[105][105];
int main()
{
//freopen("D:\\common_text\\code_stream\\in.txt","r",stdin);
//freopen("D:\\common_text\\code_stream\\out.txt","w",stdout);
scanf("%d", &n);
repd(i, 1, n)
{
scanf("%s", s[i] + 1);
}
scanf("%d", &m);
repd(i, 1, m)
{
scanf("%d", &a[i]);
}
repd(i, 1, n)
{
repd(j, 1, n)
{
dis[i][j] = inf;
}
dis[i][i] = 0; }
repd(i, 1, n)
{
repd(j, 1, n)
{
// cout<<s[i][j]<<" ";
if (s[i][j] == '1')
{
dis[i][j] = 1;
} }
// cout<<endl;
}
repd(k, 1, n)
{
repd(i, 1, n)
{
repd(j, 1, n)
{
if (dis[i][k] + dis[k][j] < dis[i][j])
{
dis[i][j] = dis[i][k] + dis[k][j];
}
}
}
} // repd(i,1,n)
// {
// repd(j,1,n)
// {
// cout<<dis[i][j]<<" ";
// }
// cout<<endl;
// } deque<int> q;
while (!q.empty())
{
q.pop_back();
}
std::vector<int> ans;
ans.clear();
int now = 2;
int start = 1;
while (now <= m)
{
int dist = now - start;
if (dist == dis[a[start]][a[now]])
{
if (!q.empty())
{
q.pop_front();
}
q.push_back(now);
now++;
} else
{
ans.push_back(a[start]);
if (!q.empty())
{
start = q.front();
q.pop_front();
}
}
// cout << sz(q) << endl;
}
ans.push_back(a[start]);
if (ans[sz(ans) - 1] != a[m])
{
ans.push_back(a[m]);
}
cout << sz(ans) << endl;
for (auto x : ans)
{
cout << x << " ";
}
cout << endl; return 0;
} inline void getInt(int* p) {
char ch;
do {
ch = getchar();
} while (ch == ' ' || ch == '\n');
if (ch == '-') {
*p = -(getchar() - '0');
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 - ch + '0';
}
}
else {
*p = ch - '0';
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 + ch - '0';
}
}
}

Codeforces Round #581 (Div. 2) C. Anna, Svyatoslav and Maps (Floyd 算法,最短路)的更多相关文章

  1. Codeforces Round #581 (Div. 2)-E. Natasha, Sasha and the Prefix Sums-动态规划+组合数学

    Codeforces Round #581 (Div. 2)-E. Natasha, Sasha and the Prefix Sums-动态规划+组合数学 [Problem Description] ...

  2. Codeforces Round #581 (Div. 2)

    A:暴力. #include<cstdio> #include<cstring> #include<iostream> #include<algorithm& ...

  3. 01串LIS(固定串思维)--Kirk and a Binary String (hard version)---Codeforces Round #581 (Div. 2)

    题意:https://codeforc.es/problemset/problem/1204/D2 给你一个01串,如:0111001100111011101000,让你改这个串(使0尽可能多,任意 ...

  4. D2. Kirk and a Binary String (hard version) D1 Kirk and a Binary String (easy version) Codeforces Round #581 (Div. 2) (实现,构造)

    D2. Kirk and a Binary String (hard version) time limit per test1 second memory limit per test256 meg ...

  5. Codeforces Round #581 (Div. 2) B. Mislove Has Lost an Array (贪心)

    B. Mislove Has Lost an Array time limit per test1 second memory limit per test256 megabytes inputsta ...

  6. Codeforces Round #581 (Div. 2)A BowWow and the Timetable (思维)

    A. BowWow and the Timetable time limit per test1 second memory limit per test256 megabytes inputstan ...

  7. Codeforces Round #581 (Div. 2)D(思维,构造,最长非递减01串)

    #define HAVE_STRUCT_TIMESPEC#include<bits/stdc++.h>using namespace std;char s[100007];int main ...

  8. Codeforces Round #406 (Div. 1) B. Legacy 线段树建图跑最短路

    B. Legacy 题目连接: http://codeforces.com/contest/786/problem/B Description Rick and his co-workers have ...

  9. codeforces 1204C Anna, Svyatoslav and Maps(floyd+dp)

    题目链接:http://codeforces.com/problemset/problem/1204/C 给定一组序列,P1,P2,P3...Pm,这是一组合法路径的序列,即任意的Pi和Pi+1之间有 ...

随机推荐

  1. linux常用命令(12)head命令

    head 与 tail 就像它的名字一样的浅显易懂,它是用来显示开头或结尾某个数量的文字区块,head 用来显示档案的开头至标准输出中,而 tail 想当然尔就是看档案的结尾.1 命令格式head [ ...

  2. CnPack 开源软件项目

    Cnpack公共窗体库 ------------------------------ CnPack 2009-09-14 SVN 包,包括以下内容: 1. CnPack 组件包所有源代码.2. CnP ...

  3. javascript原生知识点

    1. 基本类型有哪几种?null 是对象吗?基本数据类型和复杂数据类型存储有什么区别? 基本类型有6种,分别是undefined,null,bool,string,number,symbol(ES6新 ...

  4. idea关闭自动更新

    如何关闭idea的自动更新? File-Setting-Appearance&Beha-System Setting-Updates 取消勾选Automatically check updat ...

  5. 抓包分析IP如何设置详细步骤

    首先,要知道的是,我们直接改以太网(校园网)的IP地址是不行的,校园网识别不了 如下图: 我们必须通过让电脑连接个人热点才能完成IP修改. 第一步,连接上热点后打开电脑的cmd命令程序,在命令窗口中输 ...

  6. AKKA文档2.1(java版)——什么是AKKA?

    可扩展的实时事务处理 我们相信编写并发.容错.可扩展的应用相当的困难.盖因大多数时候我们一直在使用错误的工具和错误的抽象等级.AKKA就是为了改变这一切的.我们利用角色模型提升了抽象等级,并且提供了一 ...

  7. MessageBox显示位置

    假设存在2个窗口类CImDlg与CChatDlg,如果希望MessageBox跟随CChatDlg,方法是 CChatDlg *pDlg = xxx; pDlg->MessageBox();

  8. poj2385(基础DP)

    题目链接:http://poj.org/problem?id=2385 题意:最开始Bessie站在树1下面,每一个单位时间有颗苹果从树1或者树2上落下来.每个单位时间Bessie可以移动一次位置,时 ...

  9. Spring MVC的异步模式(ResponseBodyEmitter、SseEmitter、StreamingResponseBody) 高级使用篇

    DeferredResult高级使用 上篇博文介绍的它的基本使用,那么本文主要结合一些特殊的使用场景,来介绍下它的高级使用,让能更深刻的理解DeferredResult的强大之处. 它的优点也是非常明 ...

  10. Python使用pycharm导入pymysql

    file->setting->project->project interperter,双击右侧出现的pip,弹出安装包,搜索pymysql->选择第一个->Instal ...