Eureka系列(六) TimedSupervisorTask类解析
为什么要单独讲解TimedSupervisorTask这个类呢?因为这个类在我们DiscoveryClient类的initScheduledTasks方法进行定时任务初始化时被使用得比较多,所以我们需要了解下这个类,我们先看下TimedSupervisorTask这个类在initScheduledTasks的具体使用:
private final ScheduledExecutorService scheduler;
private void initScheduledTasks() {
…省略其他代码
// 初始化定时拉取服务注册信息
scheduler.schedule(
new TimedSupervisorTask(
"cacheRefresh",
scheduler,
cacheRefreshExecutor,
registryFetchIntervalSeconds,
TimeUnit.SECONDS,
expBackOffBound,
new CacheRefreshThread()
),
registryFetchIntervalSeconds, TimeUnit.SECONDS);
…省略其他代码
// 初始化定时服务续约任务
scheduler.schedule(
new TimedSupervisorTask(
"heartbeat",
scheduler,
heartbeatExecutor,
renewalIntervalInSecs,
TimeUnit.SECONDS,
expBackOffBound,
new HeartbeatThread()
),
renewalIntervalInSecs, TimeUnit.SECONDS);
…省略其他代码
}
由此可见,TimedSupervisorTask类被使用在了定时任务的初始化中,我们具体来看看这个类的结构:
public class TimedSupervisorTask extends TimerTask {
private static final Logger logger = LoggerFactory.getLogger(TimedSupervisorTask.class);
private final Counter timeoutCounter;
private final Counter rejectedCounter;
private final Counter throwableCounter;
private final LongGauge threadPoolLevelGauge;
private final ScheduledExecutorService scheduler;
private final ThreadPoolExecutor executor;
private final long timeoutMillis;
private final Runnable task;
private final AtomicLong delay;
private final long maxDelay;
public TimedSupervisorTask(String name, ScheduledExecutorService scheduler, ThreadPoolExecutor executor,
int timeout, TimeUnit timeUnit, int expBackOffBound, Runnable task) {
this.scheduler = scheduler;
this.executor = executor;
this.timeoutMillis = timeUnit.toMillis(timeout);
this.task = task;
this.delay = new AtomicLong(timeoutMillis);
this.maxDelay = timeoutMillis * expBackOffBound;
// Initialize the counters and register.
timeoutCounter = Monitors.newCounter("timeouts");
rejectedCounter = Monitors.newCounter("rejectedExecutions");
throwableCounter = Monitors.newCounter("throwables");
threadPoolLevelGauge = new LongGauge(MonitorConfig.builder("threadPoolUsed").build());
Monitors.registerObject(name, this);
}
@Override
public void run() {
Future<?> future = null;
try {
future = executor.submit(task);
threadPoolLevelGauge.set((long) executor.getActiveCount());
future.get(timeoutMillis, TimeUnit.MILLISECONDS); // block until done or timeout
delay.set(timeoutMillis);
threadPoolLevelGauge.set((long) executor.getActiveCount());
} catch (TimeoutException e) {
logger.warn("task supervisor timed out", e);
timeoutCounter.increment();
long currentDelay = delay.get();
// 如果出现异常,则将时间*2,然后取 定时时间 和 最长定时时间中最小的为下次任务执行的延时时间
long newDelay = Math.min(maxDelay, currentDelay * 2);
delay.compareAndSet(currentDelay, newDelay);
} catch (RejectedExecutionException e) {
if (executor.isShutdown() || scheduler.isShutdown()) {
logger.warn("task supervisor shutting down, reject the task", e);
} else {
logger.warn("task supervisor rejected the task", e);
}
rejectedCounter.increment();
} catch (Throwable e) {
if (executor.isShutdown() || scheduler.isShutdown()) {
logger.warn("task supervisor shutting down, can't accept the task");
} else {
logger.warn("task supervisor threw an exception", e);
}
throwableCounter.increment();
} finally {
if (future != null) {
future.cancel(true);
}
if (!scheduler.isShutdown()) {
scheduler.schedule(this, delay.get(), TimeUnit.MILLISECONDS);
}
}
}
}
我们可以仔细看看run方法的具体实现,因为这里有一个值得借鉴的设计思路!!!
我们简单来看看这个方法具体执行流程:
1.执行submit()方法提交任务
2.执行future.get()方法,如果没有在规定的时间得到返回值或者任务出现异常,则进入异常处理catch代码块。
3.如果发生异常
a. 发生TimeoutException异常,则执行Math.min(maxDelay, currentDelay ️ 2);得到任务延时时间 ️ 2 和 最大延时时间的最小值,然后改变任务的延时时间timeoutMillis(延时任务时间默认值是30s)
b.发生RejectedExecutionException异常,则将rejectedCounter值+1
c.发生Throwable异常,则将throwableCounter值+1
4.如果没有发生异常,则再设置一次延时任务时间timeoutMillis
5.进入finally代码块
a.如果future不为null,则执行future.cancel(true),中断线程停止任务
b.如果线程池没有shutdown,则创建一个新的定时任务
\(\color{red}{注意}\):不知道有没有小伙伴发现,不管我们的定时任务执行是成功还是结束(如果还没有执行结束,也会被中断),然后会再重新初始化一个新的任务。并且这个任务的延时时间还会因为不同的情况受到改变,在try代码块中如果不发现异常,则会重新初始化延时时间,如果发生TimeoutException异常,则会更改延时时间,更改为 任务延时时间 ️ 2 和 最大延时时间的最小值。所以我们会发现这样的设计会让整个延时任务很灵活。如果不发生异常,则延时时间不会变;如果发现异常,则增长延时时间;如果程序又恢复正常了,则延时时间又恢复成了默认值。
总结:我们在设计延时/周期性任务时就可以参考TimedSupervisorTask的实现,程序一旦遇到发生超时异常,就将间隔时间调大,如果连续超时,那么每次间隔时间都会增大一倍,一直到达外部参数设定的上限为止,一旦新任务不再发生超时异常,间隔时间又会自动恢复为初始值。
Eureka系列(六) TimedSupervisorTask类解析的更多相关文章
- 【Java集合系列六】LinkedHashMap解析
2017-08-14 16:30:10 1.简介 LinkedHashMap继承自HashMap,能保证迭代顺序,支持其他Map可选的操作.采用双向链表存储元素,默认的迭代序是插入序.重复插入一个已经 ...
- java基础解析系列(六)---深入注解原理及使用
java基础解析系列(六)---注解原理及使用 java基础解析系列(一)---String.StringBuffer.StringBuilder java基础解析系列(二)---Integer ja ...
- java基础解析系列(六)---注解原理及使用
java基础解析系列(六)---注解原理及使用 java基础解析系列(一)---String.StringBuffer.StringBuilder java基础解析系列(二)---Integer缓存及 ...
- 【Owin 学习系列】2. Owin Startup 类解析
Owin Startup 类解析 每个 Owin 程序都有 startup 类,在这个 startup 类里面你可以指定应用程序管道模型中的组件.你可以通过不同的方式来连接你的 startup 类和运 ...
- Eureka 系列(04)客户端源码分析
Eureka 系列(04)客户端源码分析 [TOC] 0. Spring Cloud 系列目录 - Eureka 篇 在上一篇 Eureka 系列(01)最简使用姿态 中对 Eureka 的简单用法做 ...
- Eureka 系列(02)Eureka 一致性协议
目录 Eureka 系列(02)Eureka 一致性协议 0. Spring Cloud 系列目录 - Eureka 篇 1. 服务发现方案对比 1.1 技术选型 1.2 数据模型 2. Eureka ...
- WCF编程系列(六)以编程方式配置终结点
WCF编程系列(六)以编程方式配置终结点 示例一中我们的宿主程序非常简单:只是简单的实例化了一个ServiceHost对象,然后调用open方法来启动服务.而关于终结点的配置我们都是通过配置文件来 ...
- 《深入理解java虚拟机》第六章 类文件结构
第六章 类文件结构 6.2 无关性的基石 各种不同平台的虚拟机与所有的平台都统一使用的程序存储格式--字节码(ByteCode)是构成平台无关性的基石.java虚拟机不和包括java在内的任何语言 ...
- 【C++自我精讲】基础系列六 PIMPL模式
[C++自我精讲]基础系列六 PIMPL模式 0 前言 很实用的一种基础模式. 1 PIMPL解释 PIMPL(Private Implementation 或 Pointer to Implemen ...
随机推荐
- 实用简易的U盘修复工具推荐
如果我们的U盘出现可以读取,但不能打开,或是提示格式化的情况,那可能是U盘硬件出现了问题.U盘内部部件损坏就只能维修了,如果是u盘出现逻辑错误,常用的解决方法就是到网上下载一个u盘修复工具,对u盘进行 ...
- 这些Stream流的常用方法你得记住,步骤简单不麻烦!
forEach遍历 /* forEach:该方法接收一个Consumer接口函数,将每一个流元素交给该函数处理 简单记: forEach方法:用来遍历流中的数据 是一个终结方法,遍历之后就不能继续调用 ...
- 【模板】【P3605】【USACO17JAN】Promotion Counting 晋升者计数——动态开点和线段树合并(树状数组/主席树)
(题面来自Luogu) 题目描述 奶牛们又一次试图创建一家创业公司,还是没有从过去的经验中吸取教训--牛是可怕的管理者! 为了方便,把奶牛从 1⋯N(1≤N≤100,000) 编号,把公司组织成一棵树 ...
- Codeforces Round #674 (Div. 3) F. Number of Subsequences 题解(dp)
题目链接 题目大意 给你一个长为d只包含字符'a','b','c','?' 的字符串,?可以变成a,b,c字符,假如有x个?字符,那么有\(3^x\)个字符串,求所有字符串种子序列包含多少个abc子序 ...
- Verilog 分频器
verilog设计进阶 时间:2014年5月6日星期二 主要收获: 1. 自己动手写了第一个verilog程序. 题目: 利用10M的时钟,设计一个单周期形状如下的周期波形. 思考: 最开始的想法是: ...
- Unity全局调用非静态函数
Unity全局调用非静态函数 情形 大概就是做游戏的时候想做一个给玩家展示信息的东西,比如玩家按了不该按的键提醒一下之类的.这个脚本倒是很简单,找个Text组件往上面加字就行了.问题在于这个脚本游戏中 ...
- 从内存泄露、内存溢出和堆外内存,JVM优化参数配置参数
内存泄漏 内存泄漏是指程序在申请内存后,无法释放已申请的内存空间,无用对象(不再使用的对象)持续占有内存或无用对象的内存得不到及时释放,从而造成内存空间的浪费.内存泄漏最终会导致OOM. 造成内存泄漏 ...
- moviepy音视频剪辑VideoClip类to_ImageClip方法使用注意事项
☞ ░ 前往老猿Python博文目录 ░ moviepy音视频剪辑VideoClip类to_ImageClip方法将剪辑对应时刻t的帧转换成ImageClip图像剪辑,图像剪辑是所有帧都是固定图像数据 ...
- 第8.30节 重写Python __setattr__方法实现属性修改捕获
一. 引言 在<第8.26节 重写Python类中的__getattribute__方法实现实例属性访问捕获>章节介绍了__getattribute__方法,可以通过重写该方法,截获所有通 ...
- PyQt(Python+Qt)学习随笔:树型部件QTreeWidget中使用findItems搜索项
老猿Python博文目录 专栏:使用PyQt开发图形界面Python应用 老猿Python博客地址 在QTreeWidget类实例的树型部件中,可以根据文本.搜索列以及匹配模式来搜索满足条件的项,调用 ...