给定一个无序的整数数组,找到其中最长上升子序列的长度。
输入: [10,9,2,5,3,7,101,18]
输出: 4

纯DP

解体思路:利用动态规划的方法,从一个方向遍历数组,每次获取以该位置为子序列结尾的长度。状态表示,利用数组f分别表示以该位结尾的最长上升子序列;状态转移,像前遍历,如果前者比后者小,则取二者最大长度,最后在加一,表示加上当前位。

PS:现在做dp的题自然而然能够想到闫氏DP分析法,首先想到如何用数组表示每个状态,再去思考怎么递推状态。

class Solution {
public int lengthOfLIS(int[] nums) {
int n = nums.length;
// 状态表示
int[] f = new int[n];
int res = 0; for(int i = 0; i < n; i++) {
int cur = 0;
for(int j = i - 1; j >= 0; j--) {
if(nums[i] > nums[j]) {
// 获取前面最长子序列
cur = Math.max(f[j], cur);
}
}
// 状态转移
f[i] = cur + 1;
res = Math.max(f[i], res);
} return res;
}
}

DP + 二分

解题思路:遍历数组,利用一个队列,保存遍历时当前的最长子序列。然后通过二分的方法,查找当前元素在队列中的位置,如果当前元素在队列元素的范围之内,则替换第一个大于等于它的元素,如果当前元素大于队列的最大元素,则直接将当前元素放在最后,同时最长子序列的值增加1。

  • 为什么可以替换中间的值?
    因为替换的是第一个大于等于它的值,这样既可以保持队列递增,还可以降低队列元素的值。
class Solution {
public int lengthOfLIS(int[] nums) {
int[] f = new int[nums.length];
int res = 0;
for(int num : nums) {
int l = 0, r = res;
while(l < r) {
int mid = l + r >> 1;
if(f[mid] >= num) {
r = mid;
} else {
l = mid + 1;
}
} f[r] = num;
if(res == r) res ++;
} return res;
}
}

算法——最长上升子序列(DP和二分)的更多相关文章

  1. POJ-2533最长上升子序列(DP+二分)(优化版)

    Longest Ordered Subsequence Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 41944   Acc ...

  2. Bzoj 3173: [Tjoi2013]最长上升子序列 平衡树,Treap,二分,树的序遍历

    3173: [Tjoi2013]最长上升子序列 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1183  Solved: 610[Submit][St ...

  3. 编程算法 - 最长上升子序列问题 代码(C)

    最长上升子序列问题 代码(C) 本文地址: http://blog.csdn.net/caroline_wendy 题目: 有一个长为n的数列a. 请求出这个序列中最长上升子序列的长度. 最长上升子序 ...

  4. 编程算法 - 最长公共子序列(LCS) 代码(C)

    最长公共子序列(LCS) 代码(C) 本文地址: http://blog.csdn.net/caroline_wendy 题目: 给定两个字符串s,t, 求出这两个字符串最长的公共子序列的长度. 字符 ...

  5. LCS最长公共子序列~dp学习~4

    题目连接:http://acm.hdu.edu.cn/showproblem.php?pid=1513 Palindrome Time Limit: 4000/2000 MS (Java/Others ...

  6. Longest Ordered Subsequence POJ - 2533 最长上升子序列dp

    题意:最长上升子序列nlogn写法 #include<iostream> #include<cstdio> #include<cstring> #include&l ...

  7. POJ 1458 最长公共子序列(dp)

    POJ 1458 最长公共子序列 题目大意:给出两个字符串,求出这样的一 个最长的公共子序列的长度:子序列 中的每个字符都能在两个原串中找到, 而且每个字符的先后顺序和原串中的 先后顺序一致. Sam ...

  8. 动态规划算法——最长公共子序列问题(java实现)

    已知序列X=(A,B,C,A,B,D,A)和序列Y=(B,A,D,B,A),求它们的最长公共子序列S. /* * LCSLength.java * Version 1.0.0 * Created on ...

  9. 【BZOJ2423】[HAOI2010]最长公共子序列 DP

    [BZOJ2423][HAOI2010]最长公共子序列 Description 字符序列的子序列是指从给定字符序列中随意地(不一定连续)去掉若干个字符(可能一个也不去掉)后所形成的字符序列.令给定的字 ...

随机推荐

  1. Linux上传递文件到另外一个Linux服务器

    现在的项目由于安全的需要,测试服务器被设置不能直接连接,想要连接的话,只能先登录一个服务器,然后以这个服务器为跳板,去登录另外一台真正的 服务器,即使是测试环境也只能这样操作.只能是相对来说安全一些. ...

  2. 头秃了,二十三张图带你从源码了解Spring Boot 的启动流程~

    持续原创输出,点击上方蓝字关注我 目录 前言 源码版本 从哪入手? 源码如何切分? 如何创建SpringApplication? 设置应用类型 设置初始化器(Initializer) 设置监听器(Li ...

  3. JVM初识

    先来看一张图 首先jvm是什么? jvm是java运行环境的一部分,是一种以软件模式虚拟出来的一个计算机系统. 如上图所示,JVM 主要分为三个子系统:类加载器.运行时数据区和执行引擎. 类加载器子系 ...

  4. flink1.10版local模式提交job流程分析

    1.WordCount程序实例 2.本地监听9000端口后测试结果 3.job提交流程 4.local模式执行StreamGraph任务 5.流程分析 flink job提交流程个人理解可以大致分为定 ...

  5. Dubbo 初识SPI-Version2.7.5

    1简介 SPI 全称为 Service Provider Interface,是一种服务发现机制.SPI 的本质是将接口实现类的全限定名配置在文件中,并由服务加载器读取配置文件,加载实现类.这样可以在 ...

  6. [Kafka][1][初识Kafka]

    目录 第1章 初识Kafka 1.1 发布与订阅消息系统 1.1.1 如何开始 1.1.2 独立的队列系统 1.2 Kafka登场 1.2.1 消息和批次(Message and batch) 1.2 ...

  7. 讲武德,你们要的高性能日志工具 Log4j2,来了

    Log4j 介绍过了,SLF4J 介绍过了,Logback 也介绍过了,你以为日志系列的文章就到此终结了? 不不不,我告诉你,还有一个 Log4j 2,顾名思义,它就是 Log4j 的升级版,就好像手 ...

  8. SSL加密原理

    对称加密算法 对称加密算法,同一个密钥可以同时用作信息的加密和解密,这种加密方法称为对称加密,也称为单密钥加密. 非对称加密算法 非对称加密算法(RSA)是内容加密的一类算法,它有两个秘钥:公钥与私钥 ...

  9. python-网络安全编程第二天(文件操作)

    前言 才吃完火锅嘿嘿,吃完把今天所学的内容写个博客当做笔记用哈哈! 文件操作 f=open("test.txt",w)直接打开一个文件,如果文件不存在则创建文件open模式w:以写 ...

  10. IDEA主题加高亮

    IntelliJ Idea的黑色主题,使用就是file-->import settings 选择压缩包里的jar包,主题就被导入了,之后会提示重启,重启完就可以在设置中使用了. IDEA主题下载 ...