机器学习经典算法(进阶篇)——8.KNN
KNN是通过测量不同特征值之间的距离进行分类。它的的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。K通常是不大于20的整数。KNN算法中,所选择的邻居都是已经正确分类的对象。该方法在定类决策上只依据最邻近的一个或者几个样本的类别来决定待分样本所属的类别。
下面通过一个简单的例子说明一下:如下图,绿色圆要被决定赋予哪个类,是红色三角形还是蓝色四方形?如果K=3,由于红色三角形所占比例为2/3,绿色圆将被赋予红色三角形那个类,如果K=5,由于蓝色四方形比例为3/5,因此绿色圆被赋予蓝色四方形类。

在KNN中,通过计算对象间距离来作为各个对象之间的非相似性指标,避免了对象之间的匹配问题,在这里距离一般使用欧氏距离或曼哈顿距离:

接下来对KNN算法的思想总结一下:就是在训练集中数据和标签已知的情况下,输入测试数据,将测试数据的特征与训练集中对应的特征进行相互比较,找到训练集中与之最为相似的前K个数据,则该测试数据对应的类别就是K个数据中出现次数最多的那个分类,其算法的描述为:
1)计算测试数据与各个训练数据之间的距离;
2)按照距离的递增关系进行排序;
3)选取距离最小的K个点;
4)确定前K个点所在类别的出现频率;
5)返回前K个点中出现频率最高的类别作为测试数据的预测分类。
优缺点
1、优点
简单,易于理解,易于实现,无需估计参数,无需训练
适合对稀有事件进行分类(例如当流失率很低时,比如低于0.5%,构造流失预测模型)
特别适合于多分类问题(multi-modal,对象具有多个类别标签),例如根据基因特征来判断其功能分类,kNN比SVM的表现要好
2、缺点
懒惰算法,对测试样本分类时的计算量大,内存开销大,评分慢
可解释性较差,无法给出决策树那样的规则。
常见问题
1、k值设定为多大?
k太小,分类结果易受噪声点影响;k太大,近邻中又可能包含太多的其它类别的点。(对距离加权,可以降低k值设定的影响)
k值通常是采用交叉检验来确定(以k=1为基准)
经验规则:k一般低于训练样本数的平方根
2、类别如何判定最合适?
投票法没有考虑近邻的距离的远近,距离更近的近邻也许更应该决定最终的分类,所以加权投票法更恰当一些。
3、如何选择合适的距离衡量?
高维度对距离衡量的影响:众所周知当变量数越多,欧式距离的区分能力就越差。
变量值域对距离的影响:值域越大的变量常常会在距离计算中占据主导作用,因此应先对变量进行标准化。
4、训练样本是否要一视同仁?
在训练集中,有些样本可能是更值得依赖的。
可以给不同的样本施加不同的权重,加强依赖样本的权重,降低不可信赖样本的影响。
5、性能问题?
kNN是一种懒惰算法,平时不好好学习,考试(对测试样本分类)时才临阵磨枪(临时去找k个近邻)。
懒惰的后果:构造模型很简单,但在对测试样本分类地的系统开销大,因为要扫描全部训练样本并计算距离。
已经有一些方法提高计算的效率,例如压缩训练样本量等。
6、能否大幅减少训练样本量,同时又保持分类精度?
浓缩技术(condensing)
编辑技术(editing)
python3实现
from numpy import *
import operator def createDataSet():
group = array([[1.0,1.1],[1.0,1.0],[,],[,0.1]])
labels = ['A','A','B','B']
return (group,labels) def classify0(inX, dataSet, labels, k):
dataSetSize = dataSet.shape[]
diffMat = tile(inX, (dataSetSize,))-dataSet
sqDiffMat = diffMat**
sqDistances = sqDiffMat.sum(axis=)
distances = sqDistances**0.5
sortedDistIndicies = distances.argsort()
classCount={}
for i in range(k):
voteIlabel = labels[sortedDistIndicies[i]]
classCount[voteIlabel] = classCount.get(voteIlabel,) +
# change itemgetter to item
sortedClassCount = sorted(classCount.items(),key=operator.itemgetter(), reverse=True)
return sortedClassCount[][] if __name__=='__main__':
print ('dataset - labels')
print(createDataSet())
group,labels = createDataSet()
label = classify0([,1.3],group,labels,)
print (label)
机器学习经典算法(进阶篇)——8.KNN的更多相关文章
- Python3实现机器学习经典算法(二)KNN实现简单OCR
一.前言 1.ocr概述 OCR (Optical Character Recognition,光学字符识别)是指电子设备(例如扫描仪或数码相机)检查纸上打印的字符,通过检测暗.亮的模式确定其形状,然 ...
- Python3实现机器学习经典算法(一)KNN
一.KNN概述 K-(最)近邻算法KNN(k-Nearest Neighbor)是数据挖掘分类技术中最简单的方法之一.它具有精度高.对异常值不敏感的优点,适合用来处理离散的数值型数据,但是它具有 非常 ...
- 机器学习经典算法具体解释及Python实现--K近邻(KNN)算法
(一)KNN依旧是一种监督学习算法 KNN(K Nearest Neighbors,K近邻 )算法是机器学习全部算法中理论最简单.最好理解的.KNN是一种基于实例的学习,通过计算新数据与训练数据特征值 ...
- Python3入门机器学习经典算法与应用
<Python3入门机器学习经典算法与应用> 章节第1章 欢迎来到 Python3 玩转机器学习1-1 什么是机器学习1-2 课程涵盖的内容和理念1-3 课程所使用的主要技术栈第2章 机器 ...
- Python3实现机器学习经典算法(三)ID3决策树
一.ID3决策树概述 ID3决策树是另一种非常重要的用来处理分类问题的结构,它形似一个嵌套N层的IF…ELSE结构,但是它的判断标准不再是一个关系表达式,而是对应的模块的信息增益.它通过信息增益的大小 ...
- Python3实现机器学习经典算法(四)C4.5决策树
一.C4.5决策树概述 C4.5决策树是ID3决策树的改进算法,它解决了ID3决策树无法处理连续型数据的问题以及ID3决策树在使用信息增益划分数据集的时候倾向于选择属性分支更多的属性的问题.它的大部分 ...
- 机器学习经典算法具体解释及Python实现--线性回归(Linear Regression)算法
(一)认识回归 回归是统计学中最有力的工具之中的一个. 机器学习监督学习算法分为分类算法和回归算法两种,事实上就是依据类别标签分布类型为离散型.连续性而定义的. 顾名思义.分类算法用于离散型分布预測, ...
- Python3入门机器学习经典算法与应用☝☝☝
Python3入门机器学习经典算法与应用 (一个人学习或许会很枯燥,但是寻找更多志同道合的朋友一起,学习将会变得更加有意义✌✌) 使用新版python3语言和流行的scikit-learn框架,算法与 ...
- 机器学习经典算法详解及Python实现--基于SMO的SVM分类器
原文:http://blog.csdn.net/suipingsp/article/details/41645779 支持向量机基本上是最好的有监督学习算法,因其英文名为support vector ...
- Python3入门机器学习经典算法与应用✍✍✍
Python3入门机器学习经典算法与应用 整个课程都看完了,这个课程的分享可以往下看,下面有链接,之前做java开发也做了一些年头,也分享下自己看这个视频的感受,单论单个知识点课程本身没问题,大家看的 ...
随机推荐
- Unity - NavMeshAgent-GetStart
Select scene geometry that should affect the navigation – walkable surfaces and obstacles. Check Nav ...
- SpingBoot整合jxls2.0-excel导出—— 列表循环,自定义方法,超链接等
Java中实现excel导出数据的方法有很多,一般简单的可以通过操作POI进行,但是复杂的excel格式导出如果用POI就显得非常麻烦,本文介绍的jxls2.0完全依据模板进行导出,只需要进行简单的配 ...
- vue : async / await 的应用
比如有组数据是很多页面都要用的,我想把它写在一个js文件里作为公共方法. public.js import axios from 'axios'; axios.defaults.headers.pos ...
- 题解 洛谷 P3298 【[SDOI2013]泉】
考虑到年份数很小,只有 \(6\),所以可以 \(2^6\) 来枚举子集,确定流量指数对应相同的位置,然后通过哈希和排序来计算相同的方案数. 但是这样计算出的是大于等于子集元素个数的方案数,所以还需要 ...
- 微信小程序动态评分展示/五角星展示/半颗星展示/自定义长度展示
一.前言 项目中遇到的评分相关的需求其实还挺多.之前也写过网页中关于评分功能实现的文档.这次,是基于微信小程序开发而提炼出一个简单方便使用的方法,网页开发中同样可用.这次使用的还是字体,主要是字体这个 ...
- 微信PC端多开的秘密
微信电脑端也能多开 昨天,偶然从好朋友小林(微信公众号:小林Coding)处得知,他的电脑居然可以同时上两个微信号. 手机端多开微信我知道,像华为.小米等手机系统都对此做了支持,不过在运行Window ...
- SpringBoot多数据库连接(mysql+oracle)
出于业务需求,有时我们需要在spring boot web应用程序中配置多个数据源并连接到多个数据库. 使用过Spring Boot框架的小伙伴们,想必都发现了Spring Boot对JPA提供了非常 ...
- vue学习(十六) 自定义私有过滤器 ES6字符串新方法 填充字符串
<div id="app"> <p>{{data | formatStr('yyyy-MM-dd')}}</p></div> //s ...
- 04爬取拉勾网Python岗位分析报告
# 导入需要的包import requestsimport time,randomfrom openpyxl import Workbookimport pymysql.cursors#@ 连接数据库 ...
- Python 实现分层聚类算法
''' 1.将所有样本都看作各自一类 2.定义类间距离计算公式 3.选择距离最小的一堆元素合并成一个新的类 4.重新计算各类之间的距离并重复上面的步骤 5.直到所有的原始元素划分成指定数量的类 程序要 ...