跟着闫令琪老师的课程学习,总结自己学习到的知识点

课程网址GAMES101

B站课程地址GAMES101

课程资料百度网盘【提取码:0000】

计算机图形学概述

计算机图形学是一门将模型转化到屏幕上图像的一门基础学科,主要分为:Rasterization(光栅化)、Curves and Meshes(几何表示)、Ray Trancing(光线追踪)、Animation/Simulation(动画和模拟)

图形学与计算机视觉的简单界限:

(1) 计算机视觉是将屏幕上的图片转化为模型的过程;

(2) 计算机图形学是一门将模型转化到屏幕上图像的一门基础学科。

每个类别的知识框架如下图:

Rasterization(光栅化)

点乘和叉乘

Dot Multiplication

点乘在图形学的应用

(1) 求两个向量之间的夹角:

$$\cos(\theta) = \frac{(\vec{a} \cdot \vec{b})}{\lVert a \lVert \lVert b \lVert}$$

可以判断两个向量的距离、分向量与判断向量前后



(2) 投影

一个向量在另一个向量上的投影

Cross Product

[1] 右手坐标系



右手坐标系

叉乘在图形学中的应用

(1) 判断一个向量在另一个向量的左右,叉乘为正(与右手方向一致),则为目标在自己右方,反之亦然;

(2) 在性质(1)的基础上,如果一个点在包围他的所有线的同一侧,那么可以说明该点在这个图形内,反之亦然。

矩阵

矩阵转置与逆

(1) 矩阵A、B乘积的转置等于B的转置矩阵乘A的转置矩阵

\[(AB)^T=B^TA^T
\]

(2) 矩阵AB的逆等于B的逆乘A的逆

\[(AB)^{-1} = B^{-1}A^{-1}
\]

基础变换(二维)

三维变化与二维变换矩阵类似

齐次坐标下的基础变换

Scale:

\[S(s_x,s_y) =\begin{pmatrix}
s_x &0 &0\\
0 & s_y & 0 \\
0&0&1
\end{pmatrix}\]

Rotation:

\[R(\alpha) = \begin{pmatrix}
\cos\alpha& - \sin\alpha & 0 \\
\sin\alpha & \cos \alpha &0 \\
0&0&1
\end{pmatrix}\]

Translation:

\[T(t_x,t_y)=\begin{pmatrix}
1 & 0 & t_x \\
0 &1& t_y\\
0 &0& 1
\end{pmatrix}\]

组合变换(Compositon Transform)

矩阵变换把先变化的矩阵放到右边:矩阵运算是从右向左

四元数与旋转公式

四元数

留个坑,下周再填

罗德里格斯旋转公式

Rodrigue's Rotation Formula: Raotation by angle \(\alpha\) around axis \(\vec{n}\)

\[R(\vec{n},\alpha)=cos(\alpha)I+(1-cos(\alpha))nn^{T}+\sin(\alpha)
\begin{matrix} \underbrace{
\begin{pmatrix}
0 & -n_z & n_y \\
n_z & 0 & -n_x \\
-n_y & n_x & 0
\end{pmatrix}
} \\ N\end{matrix}\]

In the formula

I :Identity matrix

最后乘积的结果是一个3*3的矩阵

MVP变换

Model Transformation

引用博客:MVP变换

对模型进行模型变换时,需要注意坐标系是在世界坐标系原点。当绕模型中心进行变换时,首先要将模型的中心点移动到世界坐标系的原点,之后在进行模型变换,之后移回到原来的位置。

矩阵描述为:$$M=M_t^{-1} M_r M_s M_t$$

View/Camera Transformation

这个过程是将确定相机的位置:将相机的位置通过下面的过程移动到固定的点和方向。

(1) 相机的位置固定在世界坐标系的原点: \(\vec{e}\)

(2) 相机的朝向 \(-\vec{Z}\): \(\hat{g}\)

(3) 相机的向上方向\(\vec Y\): \(\hat t\)

基于上述过程,要求视图变换矩阵\(M_{view}\)分别求相机的平移矩阵\(T_{view}\)、旋转矩阵\(R_{view}\)

\[T_{view} = \begin{bmatrix}
1 & 0 & 0 & -x_{\vec{e}} \\
0 & 1 & 0 & -y_{\vec{e}} \\
0 & 0 & 1 & -z_{\vec{e}} \\
0 & 0 & 0 & 1
\end{bmatrix}\]

求旋转矩阵时,直接求相机旋转到原点的矩阵不容易求解,但求原点到相机位置的旋转矩阵容易求。

所以先求原点到相机的旋转矩阵:Z To \(-\hat{g}\)、Y To \(\hat{t}\)、最后保证\(\vec{X}\) To \((\hat g \times \hat t)\) 朝向的方向,原因是保证符合右手坐标系。

\[R_{view}^{-1}=\begin{bmatrix}
x_{\hat{g} \times \hat{t}}&x_{t}&x_{-g}&0\\
y_{\hat{g} \times \hat{t}}&x_{t}&y_{-g}&0\\
z_{\hat{g} \times \hat{t}}&x_{t}&z_{-g}&0\\
0&0&0&1
\end{bmatrix}\]

因为\(R_{view}^{-1}\)是正交矩阵,所以逆矩阵和旋转矩阵相同。

\[R_{view} =\begin{bmatrix}
x_{\hat{g} \times \hat{t}}&y_{\hat{g} \times \hat{t}}&z_{\hat{g} \times \hat{t}}&0\\
x_{t}&y_{t}&z_{t}&0\\
x_{-g}&y_{-g}&z_{-g}&0\\
0&0&0&1
\end{bmatrix}\]

所以

\[M_{view} = R_{view} T_{view}=
\begin{bmatrix}
x_{\hat{g} \times \hat{t}}&y_{\hat{g} \times \hat{t}}&z_{\hat{g} \times \hat{t}}&0\\
x_{t}&y_{t}&z_{t}&0\\
x_{-g}&y_{-g}&z_{-g}&0\\
0&0&0&1
\end{bmatrix}

\begin{bmatrix}
1 & 0 & 0 & -x_{\vec{e}} \\
0 & 1 & 0 & -y_{\vec{e}} \\
0 & 0 & 1 & -z_{\vec{e}} \\
0 & 0 & 0 & 1
\end{bmatrix}\]

Projection Transformation

个人理解投影变换的终极目的是让物体挤压在一个单位大小的平面(空间)内。原因先挖个坑。

Orthographic Projection

简单理解就是将物体的忽略z坐标,将模型通过Scale To [-1,-1]^2平面内。

真正的操作:

(1) 移动模型的位置到原点

(2) 缩放模型到空间[-1,1]^3中

Perspective Projection

正视投影的光线可以看成是一个立方体,如上图。透视投影的光线可以看成一个视锥,如下图。

透视变换可以分为两个步骤进行:

(1) 将视锥挤压到立方体内\(M_{persp->ortho}\)

(2) 将挤压后的视锥进行正视投影变换$M_{ortho}

挤压时的变换矩阵\(M_{persp->ortho}=\begin{bmatrix}
n&0&0&0\\
0&n&0&0\\
0&0&n+f&-nf\\
0 & 0&1&0
\end{bmatrix}\)

所以投影变换矩阵

\[M_{proj}=M_{ortho}M_{persp->ortho}
\]

光栅化

Viewport Transform(视口变换)

将经过MVP变换后得到的单位空间模型变换到屏幕上,屏幕左边是左下角为原点。



所以视口变换的矩阵

\[M_{viewport}=\begin{pmatrix}
\frac{width}{2}&0&0&\frac{width}{2}\\
0& \frac{height}{2}&0&\frac{height}{2}\\
0&0&1&0\\
0&0&0&1
\end{pmatrix}\]

Rasterization:Draw to Raster Displays

主要是将已经经过视口变换的模型画在屏幕空间上。

主要过程有:

(1) 采样

(2) 判断像素中心的位置与三角形的关系

采样

因为屏幕空间本身分辨率已经给出,所以像素点的数量也已经确认了,但是对我们可以通过以下方法提高效率,将可能有用的像素点选取出来:

1.Bounding Box

2.Incremental Triangle Traversal

判断像素中心的位置与三角形的关系

主要应用的原理是利用向量的叉乘判断点是否在三角形内。

伪代码如下

for(int x =0 ;x<xmax;x++)
for(int y = 0;y<ymax;y++)
image[x][y]=inside(tri,x+0.5,y+0.5)

反走样与深度缓冲

Artifacts(瑕疵) in Computer Graphics

产生Artifacts的分类和原因

(1) Jaggies(Staircase Pattern)

原因:空间采样产生的锯齿

(2) Mpire

原因:图片欠采样

(3) Wagon Wheel Effect

原因:时间上采样产生

解决办法

(1) 提高采样率:不实用

(2) 反走样

反走样

反锯齿的思路是先模糊,后采样,顺序不可以调换。

走样的原因:采样频率满足奈奎斯特采样定律,即采样频率高于二倍的最高频率。

滤波

频率图:越靠近中心点,表示的频率越低

滤波器的种类大致分为四类:

(1) 低通滤波:应用的效果是模糊

(2) 高通滤波:应用效果是提取边缘信息

(3) 带通滤波:也可以绘制出图像的边缘信息

卷积定理

时域卷积、频域相乘

时域卷积,频率图向两边拓展。

MSAA

通过MSAA方法可以首先模糊的效果。

步骤如下:

(1) 将每个像素点再进行细分

(2) 判断一个像素点里有几个细分的点在三角形内

(3) 将像素点根据在三角星内部细分点不同程度的着色,表示已经模糊。

上述过程的流程图如下:





上述过程在频率上的过程相当于低通滤波

Z-Buffer深度缓冲

每个像素都有一个z值代表像素点的深度、z值越大,说明该点越远。

Z-Buffer 算法伪代码

Initalize depth buffer to \(\infty\)

for(each trangle T)
for(each sample(x,y,z) in T)
if(z<zbuffer[x,y]) //closeet samnple so far
zbuffer[x,y]=z; //update color
framebuffer[x,y]=rgb; //update depth

总结

本周主要是完成光栅化的过程。其中比较重要的几个知识点:向量点乘和叉乘的几何意义、齐次坐标系下的矩阵变换、MVP变换、视口变换、光栅化、反走样、Z-Buffrer深度缓冲等等基础概念。

【Notes】现代图形学入门_01的更多相关文章

  1. 【Notes】现代图形学入门_02

    跟着闫令琪老师的课程学习,总结自己学习到的知识点 课程网址GAMES101 B站课程地址GAMES101 课程资料百度网盘[提取码:0000] 光栅化 着色(Shading) 在图形学中,着色的定义可 ...

  2. 图形学入门(3)——区域填充算法(region filling)

    继续图形学之旅,我们已经解决了如何画线和画圆的问题,接下来要解决的是,如何往一个区域内填充颜色?对一个像素填充颜色只需调用SetPixel之类的函数就行了,所以这个问题其实就是:如何找到一个区域内的所 ...

  3. 图形学入门(1)——直线生成算法(DDA和Bresenham)

    开一个新坑,记录从零开始学习图形学的过程,现在还是个正在学习的萌新,写的不好请见谅. 首先从最基础的直线生成算法开始,当我们要在屏幕上画一条直线时,由于屏幕由一个个像素组成,所以实际上计算机显示的直线 ...

  4. 64 计算机图形学入门(1)——OpenGL环境配置与图形流水线(图像管线)

    0 引言 最近想学一下计算机图形学方面的知识,原因如下.目前本人接触了数字图像处理(opencv)以及点云处理(PCL)方面的知识,对从图像和点云中提取特征信息,并将特征转化为底层/中层语义信息有了一 ...

  5. 【Notes_2】现代图形学入门——向量与线性代数

    向量与线性代数 点乘和叉乘 Dot Multiplication 点乘在图形学的应用 (1) 求两个向量之间的夹角: $$\cos(\theta) = \frac{(\vec{a} \cdot \ve ...

  6. 【Notes_1】现代图形学入门——计算机图形学概述

    跟着闫令琪老师的课程学习,总结自己学习到的知识点 课程网址GAMES101 B站课程地址GAMES101 课程资料百度网盘[提取码:0000] 计算机图形学概述 计算机图形学是一门将模型转化到屏幕上图 ...

  7. 【Notes_8】现代图形学入门——几何(基本表示方法、曲线与曲面)

    几何 几何表示 隐式表示 不给出点的坐标,给数学表达式 优点 可以很容易找到点与几何之间的关系 缺点 找某特定的点很难 更多的隐式表示方法 Constructive Solid Geometry .D ...

  8. 《Shader入门精要》中MVP变换的Projection矩阵与《GAMES101图形学入门》中的区别

    game101的透视投影的投影矩阵是这样的 正交投影是这样的 而shader入门精要的透视投影矩阵是这样子 正交投影矩阵是这样子 game101的透视投影是这样得到的 而正交投影的时候并没有假设中心点 ...

  9. Spring入门_01

    <bean id="userAction" class="com.umgsai.spring.UserAction"> <property n ...

随机推荐

  1. cloudera manager server迁移

    一.迁移背景 服务器出了问题,导致整个cm server界面呈现出不可用的状态,也就是获取不到各个大数据组件以及主机相关的状态的信息,整个cm server的前端界面处于瘫痪的状态,不可用,刚开始怀疑 ...

  2. CSS开发过程中的20个快速提升技巧

    摘要:本文涵盖了20个CSS技巧,可以解决许多工作中常见的问题, 让你也成为一个CSS高手. 1.使用CSS重置(reset) css重置库如normalize.css已经被使用很多年了,它们可以为你 ...

  3. windows10与linux进行ftp遇到550 Failed to change directory及553 Could not creat file

    第一个原因: 没有权限,可以使用带有l参数的ls命令来看文件或者目录的权限 ls -l 解决:给本地用户添加一个可写权限 chmod +w /home/student ##给对应的本地用户添加一个可写 ...

  4. zjnu1749 PAROVI (数位dp)

    Description The distance between two integers is defined as the sum of the absolute result of subtra ...

  5. 关于贪心算法的经典问题(算法效率 or 动态规划)

    如题,贪心算法隶属于提高算法效率的方法,也常与动态规划的思路相挂钩或一同出现.下面介绍几个经典贪心问题.(参考自刘汝佳著<算法竞赛入门经典>).P.S.下文皆是我一个字一个字敲出来的,绝对 ...

  6. Codeforces Round #660 (Div. 2) A. Captain Flint and Crew Recruitment、Captain Flint and a Long Voyage

    题目链接:Captain Flint and Crew Recruitment 题意: t组输入,每一组输入一个n.这里我们说一下题目定义的近似质数概念: "如果可以将正整数x表示为p⋅q, ...

  7. Java 窗口 绘制图形 #3

    写在前面: 高数下学到第二章,突发奇想要写一个程序画二元函数图像 思路分了三层: ①抽象层: 因变量z,自变量x.y,坐标原点x0.y0.z0 ②投影实现层: 屏幕投影坐标px.py,x轴与屏幕水平方 ...

  8. tomacat服务器上web资源访问流程、web应用打成war包发布、Context的reloadable属性、tomacat体系架构

    一.web资源访问流程 二.web应用打成war包发布到服务器 好处:打成war包发布到服务器,那么服务器会自动把它拆解成文件夹 jar命令是java自带的一个命令,如果之前配置过Java编译环境就可 ...

  9. EF Core数据访问入门

    重要概念 Entity Framework (EF) Core 是轻量化.可扩展.开源和跨平台的数据访问技术,它还是一 种对象关系映射器 (ORM),它使 .NET 开发人员能够使用面向对象的思想处理 ...

  10. 请问什么时候对象分配会不在 TLAB 内分配

    Java 对象分配流程 我们这里不考虑栈上分配,这些会在 JIT 的章节详细分析,我们这里考虑的是无法栈上分配需要共享的对象. 对于 HotSpot JVM 实现,所有的 GC 算法的实现都是一种对于 ...