【Notes】现代图形学入门_01
跟着闫令琪老师的课程学习,总结自己学习到的知识点
计算机图形学概述
计算机图形学是一门将模型转化到屏幕上图像的一门基础学科,主要分为:Rasterization(光栅化)、Curves and Meshes(几何表示)、Ray Trancing(光线追踪)、Animation/Simulation(动画和模拟)
图形学与计算机视觉的简单界限:
(1) 计算机视觉是将屏幕上的图片转化为模型的过程;
(2) 计算机图形学是一门将模型转化到屏幕上图像的一门基础学科。
每个类别的知识框架如下图:
Rasterization(光栅化)
点乘和叉乘
Dot Multiplication
点乘在图形学的应用
(1) 求两个向量之间的夹角:
$$\cos(\theta) = \frac{(\vec{a} \cdot \vec{b})}{\lVert a \lVert \lVert b \lVert}$$
可以判断两个向量的距离、分向量与判断向量前后
(2) 投影
一个向量在另一个向量上的投影
Cross Product
[1] 右手坐标系
右手坐标系
叉乘在图形学中的应用
(1) 判断一个向量在另一个向量的左右,叉乘为正(与右手方向一致),则为目标在自己右方,反之亦然;
(2) 在性质(1)的基础上,如果一个点在包围他的所有线的同一侧,那么可以说明该点在这个图形内,反之亦然。
矩阵
矩阵转置与逆
(1) 矩阵A、B乘积的转置等于B的转置矩阵乘A的转置矩阵
\]
(2) 矩阵AB的逆等于B的逆乘A的逆
\]
基础变换(二维)
三维变化与二维变换矩阵类似
齐次坐标下的基础变换
Scale:
s_x &0 &0\\
0 & s_y & 0 \\
0&0&1
\end{pmatrix}\]
Rotation:
\cos\alpha& - \sin\alpha & 0 \\
\sin\alpha & \cos \alpha &0 \\
0&0&1
\end{pmatrix}\]
Translation:
1 & 0 & t_x \\
0 &1& t_y\\
0 &0& 1
\end{pmatrix}\]
组合变换(Compositon Transform)
矩阵变换把先变化的矩阵放到右边:矩阵运算是从右向左
四元数与旋转公式
四元数
罗德里格斯旋转公式
Rodrigue's Rotation Formula: Raotation by angle \(\alpha\) around axis \(\vec{n}\)
\begin{matrix} \underbrace{
\begin{pmatrix}
0 & -n_z & n_y \\
n_z & 0 & -n_x \\
-n_y & n_x & 0
\end{pmatrix}
} \\ N\end{matrix}\]
In the formula
I :Identity matrix
最后乘积的结果是一个3*3的矩阵
MVP变换
Model Transformation
引用博客:MVP变换
对模型进行模型变换时,需要注意坐标系是在世界坐标系原点。当绕模型中心进行变换时,首先要将模型的中心点移动到世界坐标系的原点,之后在进行模型变换,之后移回到原来的位置。
矩阵描述为:$$M=M_t^{-1} M_r M_s M_t$$
View/Camera Transformation
这个过程是将确定相机的位置:将相机的位置通过下面的过程移动到固定的点和方向。
(1) 相机的位置固定在世界坐标系的原点: \(\vec{e}\)
(2) 相机的朝向 \(-\vec{Z}\): \(\hat{g}\)
(3) 相机的向上方向\(\vec Y\): \(\hat t\)
基于上述过程,要求视图变换矩阵\(M_{view}\)分别求相机的平移矩阵\(T_{view}\)、旋转矩阵\(R_{view}\)
1 & 0 & 0 & -x_{\vec{e}} \\
0 & 1 & 0 & -y_{\vec{e}} \\
0 & 0 & 1 & -z_{\vec{e}} \\
0 & 0 & 0 & 1
\end{bmatrix}\]
求旋转矩阵时,直接求相机旋转到原点的矩阵不容易求解,但求原点到相机位置的旋转矩阵容易求。
所以先求原点到相机的旋转矩阵:Z To \(-\hat{g}\)、Y To \(\hat{t}\)、最后保证\(\vec{X}\) To \((\hat g \times \hat t)\) 朝向的方向,原因是保证符合右手坐标系。
x_{\hat{g} \times \hat{t}}&x_{t}&x_{-g}&0\\
y_{\hat{g} \times \hat{t}}&x_{t}&y_{-g}&0\\
z_{\hat{g} \times \hat{t}}&x_{t}&z_{-g}&0\\
0&0&0&1
\end{bmatrix}\]
因为\(R_{view}^{-1}\)是正交矩阵,所以逆矩阵和旋转矩阵相同。
x_{\hat{g} \times \hat{t}}&y_{\hat{g} \times \hat{t}}&z_{\hat{g} \times \hat{t}}&0\\
x_{t}&y_{t}&z_{t}&0\\
x_{-g}&y_{-g}&z_{-g}&0\\
0&0&0&1
\end{bmatrix}\]
所以
\begin{bmatrix}
x_{\hat{g} \times \hat{t}}&y_{\hat{g} \times \hat{t}}&z_{\hat{g} \times \hat{t}}&0\\
x_{t}&y_{t}&z_{t}&0\\
x_{-g}&y_{-g}&z_{-g}&0\\
0&0&0&1
\end{bmatrix}
\begin{bmatrix}
1 & 0 & 0 & -x_{\vec{e}} \\
0 & 1 & 0 & -y_{\vec{e}} \\
0 & 0 & 1 & -z_{\vec{e}} \\
0 & 0 & 0 & 1
\end{bmatrix}\]
Projection Transformation
个人理解投影变换的终极目的是让物体挤压在一个单位大小的平面(空间)内。原因先挖个坑。
Orthographic Projection
简单理解就是将物体的忽略z坐标,将模型通过Scale To [-1,-1]^2平面内。
真正的操作:
(1) 移动模型的位置到原点
(2) 缩放模型到空间[-1,1]^3中
Perspective Projection
正视投影的光线可以看成是一个立方体,如上图。透视投影的光线可以看成一个视锥,如下图。
透视变换可以分为两个步骤进行:
(1) 将视锥挤压到立方体内\(M_{persp->ortho}\)
(2) 将挤压后的视锥进行正视投影变换$M_{ortho}
挤压时的变换矩阵\(M_{persp->ortho}=\begin{bmatrix}
n&0&0&0\\
0&n&0&0\\
0&0&n+f&-nf\\
0 & 0&1&0
\end{bmatrix}\)
所以投影变换矩阵
\]
光栅化
Viewport Transform(视口变换)
将经过MVP变换后得到的单位空间模型变换到屏幕上,屏幕左边是左下角为原点。
所以视口变换的矩阵
\frac{width}{2}&0&0&\frac{width}{2}\\
0& \frac{height}{2}&0&\frac{height}{2}\\
0&0&1&0\\
0&0&0&1
\end{pmatrix}\]
Rasterization:Draw to Raster Displays
主要是将已经经过视口变换的模型画在屏幕空间上。
主要过程有:
(1) 采样
(2) 判断像素中心的位置与三角形的关系
采样
因为屏幕空间本身分辨率已经给出,所以像素点的数量也已经确认了,但是对我们可以通过以下方法提高效率,将可能有用的像素点选取出来:
1.Bounding Box
2.Incremental Triangle Traversal
判断像素中心的位置与三角形的关系
主要应用的原理是利用向量的叉乘判断点是否在三角形内。
伪代码如下
for(int x =0 ;x<xmax;x++)
for(int y = 0;y<ymax;y++)
image[x][y]=inside(tri,x+0.5,y+0.5)
反走样与深度缓冲
Artifacts(瑕疵) in Computer Graphics
产生Artifacts的分类和原因
(1) Jaggies(Staircase Pattern)
原因:空间采样产生的锯齿
(2) Mpire
原因:图片欠采样
(3) Wagon Wheel Effect
原因:时间上采样产生
解决办法
(1) 提高采样率:不实用
(2) 反走样
反走样
反锯齿的思路是先模糊,后采样,顺序不可以调换。
走样的原因:采样频率满足奈奎斯特采样定律,即采样频率高于二倍的最高频率。
滤波
频率图:越靠近中心点,表示的频率越低
滤波器的种类大致分为四类:
(1) 低通滤波:应用的效果是模糊
(2) 高通滤波:应用效果是提取边缘信息
(3) 带通滤波:也可以绘制出图像的边缘信息
卷积定理
时域卷积、频域相乘
时域卷积,频率图向两边拓展。
MSAA
通过MSAA方法可以首先模糊的效果。
步骤如下:
(1) 将每个像素点再进行细分
(2) 判断一个像素点里有几个细分的点在三角形内
(3) 将像素点根据在三角星内部细分点不同程度的着色,表示已经模糊。
上述过程的流程图如下:
上述过程在频率上的过程相当于低通滤波
Z-Buffer深度缓冲
每个像素都有一个z值代表像素点的深度、z值越大,说明该点越远。
Z-Buffer 算法伪代码
Initalize depth buffer to \(\infty\)
for(each trangle T)
for(each sample(x,y,z) in T)
if(z<zbuffer[x,y]) //closeet samnple so far
zbuffer[x,y]=z; //update color
framebuffer[x,y]=rgb; //update depth
总结
本周主要是完成光栅化的过程。其中比较重要的几个知识点:向量点乘和叉乘的几何意义、齐次坐标系下的矩阵变换、MVP变换、视口变换、光栅化、反走样、Z-Buffrer深度缓冲等等基础概念。
【Notes】现代图形学入门_01的更多相关文章
- 【Notes】现代图形学入门_02
跟着闫令琪老师的课程学习,总结自己学习到的知识点 课程网址GAMES101 B站课程地址GAMES101 课程资料百度网盘[提取码:0000] 光栅化 着色(Shading) 在图形学中,着色的定义可 ...
- 图形学入门(3)——区域填充算法(region filling)
继续图形学之旅,我们已经解决了如何画线和画圆的问题,接下来要解决的是,如何往一个区域内填充颜色?对一个像素填充颜色只需调用SetPixel之类的函数就行了,所以这个问题其实就是:如何找到一个区域内的所 ...
- 图形学入门(1)——直线生成算法(DDA和Bresenham)
开一个新坑,记录从零开始学习图形学的过程,现在还是个正在学习的萌新,写的不好请见谅. 首先从最基础的直线生成算法开始,当我们要在屏幕上画一条直线时,由于屏幕由一个个像素组成,所以实际上计算机显示的直线 ...
- 64 计算机图形学入门(1)——OpenGL环境配置与图形流水线(图像管线)
0 引言 最近想学一下计算机图形学方面的知识,原因如下.目前本人接触了数字图像处理(opencv)以及点云处理(PCL)方面的知识,对从图像和点云中提取特征信息,并将特征转化为底层/中层语义信息有了一 ...
- 【Notes_2】现代图形学入门——向量与线性代数
向量与线性代数 点乘和叉乘 Dot Multiplication 点乘在图形学的应用 (1) 求两个向量之间的夹角: $$\cos(\theta) = \frac{(\vec{a} \cdot \ve ...
- 【Notes_1】现代图形学入门——计算机图形学概述
跟着闫令琪老师的课程学习,总结自己学习到的知识点 课程网址GAMES101 B站课程地址GAMES101 课程资料百度网盘[提取码:0000] 计算机图形学概述 计算机图形学是一门将模型转化到屏幕上图 ...
- 【Notes_8】现代图形学入门——几何(基本表示方法、曲线与曲面)
几何 几何表示 隐式表示 不给出点的坐标,给数学表达式 优点 可以很容易找到点与几何之间的关系 缺点 找某特定的点很难 更多的隐式表示方法 Constructive Solid Geometry .D ...
- 《Shader入门精要》中MVP变换的Projection矩阵与《GAMES101图形学入门》中的区别
game101的透视投影的投影矩阵是这样的 正交投影是这样的 而shader入门精要的透视投影矩阵是这样子 正交投影矩阵是这样子 game101的透视投影是这样得到的 而正交投影的时候并没有假设中心点 ...
- Spring入门_01
<bean id="userAction" class="com.umgsai.spring.UserAction"> <property n ...
随机推荐
- TCP/IP__IP寻址及ARP解析
ARP解析过程中MAC地址以及IP地址的变化情况 1.两主机要通信传送数据时,就要把应用数据封装成IP包,然后再交给下一层数据链路层继续封装成帧:之后根据MAC地址才能把数据从一台主机,准确无误的传送 ...
- 解决GraphViz's executables not found
用python做决策树可视化时,出现了下面的错误: 于是安装Graphviz,并将其添加到path的环境变量. Graphviz下载 提取码:fmst 但是已经安装了pydotplus且import之 ...
- sqoop使用以及常见问题
1.hdfs文件的权限问题 问题分析与解决: 根据报错信息是hdfs文件的权限问题,命令进入集群执行的用户为null,而hdfs文件所有者为hdfs. 要么以用户hdfs执行命令,要么调整hdfs文件 ...
- [POJ1985] Cow Marathon 「树的直径」
>传送门< 题意:求树的直径 思路:就是道模板题,两遍dfs就求出来了 Code #include <cstdio> #include <iostream> #in ...
- HDU4366 Successor【dfs序 分块】
HDU4366 Successor 题意: 给出一棵根为\(1\)的树,每个点有两个权值\(x,y\),每次询问一个点的子树中\(x\)比这个点的\(x\)大且\(y\)值最大的那个点 题解: 如果以 ...
- UVA 11475 Extend to Palindrome (kmp || manacher || 后缀数组)
题目链接:点击打开链接 题意:给你一个串,让你在串后面添加尽可能少的字符使得这个串变成回文串. 思路:这题可以kmp,manacher,后缀数组三种方法都可以做,kmp和manacher效率较高,时间 ...
- 超易懂!原来SOLID原则要这么理解!
说到 SOLID 原则,相信有过几年工作经验的朋友都有个大概印象,但就是不知道它具体是什么.甚至有些工作了十几年的朋友,它们对 SOLID 原则的理解也停留在表面.今天我们就来聊聊 SOLID 原则以 ...
- OpenStack Train版-3.安装glance镜像服务
安装glance镜像服务 创建数据库并授权 mysql -u root create database glance; GRANT ALL PRIVILEGES ON glance.* TO 'gla ...
- Python源码剖析——01内建对象
<Python源码剖析>笔记 第一章:对象初识 对象是Python中的核心概念,面向对象中的"类"和"对象"在Python中的概念都为对象,具体分为 ...
- Gym 101170F Free Weights(二分)题解
题意:给出两行,每一行都有n个数组,一共有2 * n个,大小为1~n,每个有两个.现在可以进行操作:拿出一个物品i,然后放到一个空格,花费i.可以任意平移物品,平移没有花费.每一行空间无限.要求你把一 ...