python中的递归
python中的递归
关注公众号“轻松学编程”了解更多。
文章更改后地址:传送门
间接或直接调用自身的函数被称为递归函数。
间接:
def func():
otherfunc()
def otherfunc():
func()
直接:
def func():
func()
递归函数必须要有收敛条件和递归公式。
1、递归求和
'''
使用递归求和
'''
def my_sum(n):
'''
递归求和
1+2+3+...+n
:param n: int型
:return: int型
'''
# 收敛条件
if n == 1:
return 1
# 递归公式
return n + my_sum(n-1)
def main():
print(my_sum(10))
if __name__ == '__main__':
main()
结果为:
55
当发生函数调用时 需要做保存现场和恢复现场的工作。
保存现场和恢复现场的工作都是利用栈(stack)来实现的。
栈是一个FILO的结构 - 栈非常的快但是它很小。
python默认栈的层数为1000层,可以使用以下方法来增加层数(不推荐)
import sys
# 比如增加层数到9999层
sys.setrecursionlimit(9999)
这样的递归不好,因为递归使用的是栈,需要用栈来保护现场和恢复现场,很耗费资源,可以使用尾递归来解决这个问题,即不回溯,直接使用最后一次的结果作为最终的结果。
2、尾递归
'''
使用递归求和
'''
def my_sum(n,result=0):
'''
递归求和
1+2+3+...+n
:param n: int型
:param result: int型,上一层求得的结果,第一层递归时为0
:return: int型
'''
# 收敛条件
if n == 1:
return result +1
# 递归公式
return my_sum(n-1,result=result+n)
def main():
print(my_sum(10))
if __name__ == '__main__':
main()
结果为:
55
3、递归求斐波那契数列
'''
斐波那契数列:
f(n) = 1 当n = 1,2时
f(n) = f(n-1) + f(n-2) 当n > 2时
比如: [1,1,2,3,5,8,13,21,34,55]
'''
def fibonacci(n):
# 收敛条件
if n <= 2:
return 1
# 递归公式
return fibonacci(n-1) + fibonacci(n-2)
def main():
print(fibonacci(10))
if __name__ == '__main__':
main()
结果为:
55
这样的递归是不好的,因为每求一层递归都要重新计算前面(n-1)层递归,开销很大,比如:
求f(9)
要先求f(8) + f(7)
而f(8)= f(7) + f(6)
f(7)=f(6) + f(5)
...
为了节省这部分重复的开销,可以使用动态规划来解决这个问题。
4、动态规划实现递归
动态规划(dynamic programming)是运筹学的一个分支,是求解决策过程(decision process)最优化的数学方法。20世纪50年代初美国数学家R.E.Bellman等人在研究多阶段决策过程(multistep decision process)的优化问题时,提出了著名的最优化原理(principle of optimality),把多阶段过程转化为一系列单阶段问题,利用各阶段之间的关系,逐个求解,创立了解决这类过程优化问题的新方法——动态规划。
其基本思想也是将待求解问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解。如果我们能够保存已解决的子问题的答案,而在需要时再找出已求得的答案,这样就可以避免大量的重复计算,节省时间。我们可以用一个表来记录所有已解的子问题的答案。不管该子问题以后是否被用到,只要它被计算过,就将其结果填入表中。这就是动态规划法的基本思路。具体的动态规划算法多种多样,但它们具有相同的填表格式。
在python中的递归,可以使用字典来代替这个表。
'''
斐波那契数列:
f(n) = 1 当n = 1,2时
f(n) = f(n-1) + f(n-2) 当n > 2时
比如: [1,1,2,3,5,8,13,21,34,55]
'''
def fibonacci(n,temp={ }):
# 收敛条件
if n <= 2:
return 1
# 首先先从字典中取值
try:
return temp[n]
except KeyError:
# 如果字典中没有就先把值存进字典
temp[n] = fibonacci(n-1) + fibonacci(n-2)
return temp[n]
def main():
print(fibonacci(10))
if __name__ == '__main__':
main()
结果为:
55
使用动态规划解决:
一个小孩爬阶梯,一次有3种走法:一次走1个阶梯,一次走2个阶梯,一次走3个阶梯,问如果有10个阶梯总共有多少中走法?
def walk(steps,temp={}):
if steps < 0:
return 0
elif steps == 0:
return 1
try:
return temp[steps]
except KeyError:
temp[steps] = walk(steps - 1) + walk(steps - 2) + walk(steps - 3)
return temp[steps]
print(walk(10))
结果为:
274
5、使用装饰器测试递归函数用时
'''
斐波那契数列:
f(n) = 1 当n = 1,2时
f(n) = f(n-1) + f(n-2) 当n > 2时
比如: [1,1,2,3,5,8,13,21,34,55]
'''
from functools import wraps
import time
def func_time(func):
# 使用@wraps后可以还原原来的函数
# 即可以使用func.__wrapped__()来去掉装饰器
@wraps(func)
def wrapper(*arg,**kwargs):
# 第一层递归才输出时间
if kwargs['level'] == 0:
start = time.perf_counter()
result = func(*arg,**kwargs)
end = time.perf_counter()
print(f'Execution Time:{end-start}s')
return result
else:
return func(*arg,**kwargs)
return wrapper
@func_time
def fibonacci(n,temp={},*,level):
# 收敛条件
if n <= 2:
return 1
# 首先先从字典中取值
try:
return temp[n]
except KeyError:
level += 1
# 如果字典中没有就先把值存进字典
temp[n] = fibonacci(n-1,level=level) + fibonacci(n-2,level=level)
return temp[n]
def main():
print(fibonacci(121, level=0))
fib_19 = fibonacci.__wrapped__(19,level=0)
fib_20 = fibonacci.__wrapped__(20,level=0)
print(f'黄金比例:{fib_19/fib_20}')
if __name__ == '__main__':
main()
结果为:
Execution Time:0.0012316425773240605s
8670007398507948658051921
黄金比例:0.6180339985218034
注意1:能用循环写的代码一定不要使用递归。
注意2:如果用递归也尽量使用尾递归(只需要递归不需要回溯)和动态规划。
后记
【后记】为了让大家能够轻松学编程,我创建了一个公众号【轻松学编程】,里面有让你快速学会编程的文章,当然也有一些干货提高你的编程水平,也有一些编程项目适合做一些课程设计等课题。
也可加我微信【1257309054】,拉你进群,大家一起交流学习。
如果文章对您有帮助,请我喝杯咖啡吧!
公众号
关注我,我们一起成长~~
python中的递归的更多相关文章
- python中的递归问题,求圆周率
以上面一个公式为例: import numpy as np def getPi(n): if n == 0: return np.power(-1,n)*(1.0/(2*n+1)) else: ret ...
- Python中解决递归限制的问题
在做某些算法时,使用递归会出现类似下面的报错: RuntimeError: maximum recursion depth exceeded python默认的递归深度是很有限的,大概是900多的样子 ...
- python中使用递归实现反转链表
反转链表一般有两种实现方式,一种是循环,另外一种是递归,前几天做了一个作业,用到这东西了. 这里就做个记录,方便以后温习. 递归的方法: class Node: def __init__(self,i ...
- python中的递归小实例
#1.n! def fact(n): if n == 0: return 1 else: return n*fact(n-1)print(fact(10)) #2.斐波那契数列F(n)=F(n-1)+ ...
- Python中使用递归输出嵌套列表并转化为大写
- python中的归并排序
本来在博客上看到用python写的归并排序的程序,然后自己跟着他写了一下,结果发现是错的,不得不自己操作.而自己对python不是非常了解所以就变百度边写,最终在花了半个小时之后就写好了. def m ...
- Python中递归的最大次数
实际应用中遇到了一个python递归调用的问题,报错如下: RuntimeError: maximum recursion depth exceeded while calling a Python ...
- python中的迭代与递归
遇到一个情况,需要进行递归操作,但是呢递归次数非常大,有一万多次.先不说一万多次递归,原来的测试代码是java的,没装jdk和编译环境,还是用python吧 先看下原本的java代码: public ...
- python中的内置函数,递归,递归文件显示(二),二分法
1.部分内置函数 repr()显示出字符串的官方表示形式,返回一个对象的string形式 # repr 就是原封不动的输出, 引号和转义字符都不起作用 print(repr('大家好,\n \t我叫周 ...
随机推荐
- Python-面向网络编程-socket原理
socket 整个计算机网络是由协议构成,想要通信必须遵守对应的协议,如Web中的http协议.传输协议TCP和UDP等等.在网络工程师的眼中,可能现在网络上的一切都是socket,一切皆socket ...
- MCU(Micro Control Unit)中文名称为微控制单元
参考:http://www.elecfans.com/dianzichangshi/mcu.html 什么是mcu_mcu是什么意思 标签:MCU(471)单片机(3098)微控制器(503) MCU ...
- 列举python的可变类型和不可变类型
可变的# unhashable type: 'list'# unhashable type: 'dict'# unhashable type: 'set'# 不可变# hashable type:st ...
- ubuntu1804 snort base
1.环境准备 apt安装 sudo apt-get update -y sudo apt-get dist-upgrade -y sudo apt-get install -y zlib1g-dev ...
- laravel 500错误的一种可能
报这个错误,我一度认为,再加上,百度,大家都说是配置有问题,经过我不断地问我学长,结果就是一个小错误,简直太丢人了. 居然是少了一个括号的问题,自闭了
- git pull设置为无需密码
https方式每次都要输入密码,按照如下设置即可输入一次就不用再手输入密码的困扰而且又享受https带来的极速 设置记住密码(默认15分钟): git config --global credenti ...
- linux的bootmem内存管理
内核刚开始启动的时候如果一步到位写一个很完善的内存管理系统是相当麻烦的.所以linux先建立了一个非常简单的临时内存管理系统bootmem,有了这个bootmem就可以做简单的内存分配/释放操作,在b ...
- 多测师讲解htm_L标题标签001_高级讲师 肖sir
<!DOCTYPE html><html> <head> <meta charset="UTF-8"> <title>百 ...
- 多测师讲解python ____字典,字符,元组,集合(转换)___高级讲师肖sir
1.字符转换 a =['a','b','c','d','e'] #定义一个列表b =[1,2,3,4,5] #定义一个列表c=zip(a,b)# zip类:可以将两个列表进行拼接,返回一个列表且列表中 ...
- buuctf-misc-刷新过的图片
知识点:F5隐写 kali中安装F5-steganography 工具 git clone https://github.com/matthewgao/F5-steganography 解密的时候输入 ...