python中的递归
python中的递归
关注公众号“轻松学编程”了解更多。
文章更改后地址:传送门
间接或直接调用自身的函数被称为递归函数。
间接:
def func():
otherfunc()
def otherfunc():
func()
直接:
def func():
func()
递归函数必须要有收敛条件和递归公式。
1、递归求和
'''
使用递归求和
'''
def my_sum(n):
'''
递归求和
1+2+3+...+n
:param n: int型
:return: int型
'''
# 收敛条件
if n == 1:
return 1
# 递归公式
return n + my_sum(n-1)
def main():
print(my_sum(10))
if __name__ == '__main__':
main()
结果为:
55
当发生函数调用时 需要做保存现场和恢复现场的工作。
保存现场和恢复现场的工作都是利用栈(stack)来实现的。
栈是一个FILO的结构 - 栈非常的快但是它很小。
python默认栈的层数为1000层,可以使用以下方法来增加层数(不推荐)
import sys
# 比如增加层数到9999层
sys.setrecursionlimit(9999)
这样的递归不好,因为递归使用的是栈,需要用栈来保护现场和恢复现场,很耗费资源,可以使用尾递归来解决这个问题,即不回溯,直接使用最后一次的结果作为最终的结果。
2、尾递归
'''
使用递归求和
'''
def my_sum(n,result=0):
'''
递归求和
1+2+3+...+n
:param n: int型
:param result: int型,上一层求得的结果,第一层递归时为0
:return: int型
'''
# 收敛条件
if n == 1:
return result +1
# 递归公式
return my_sum(n-1,result=result+n)
def main():
print(my_sum(10))
if __name__ == '__main__':
main()
结果为:
55
3、递归求斐波那契数列
'''
斐波那契数列:
f(n) = 1 当n = 1,2时
f(n) = f(n-1) + f(n-2) 当n > 2时
比如: [1,1,2,3,5,8,13,21,34,55]
'''
def fibonacci(n):
# 收敛条件
if n <= 2:
return 1
# 递归公式
return fibonacci(n-1) + fibonacci(n-2)
def main():
print(fibonacci(10))
if __name__ == '__main__':
main()
结果为:
55
这样的递归是不好的,因为每求一层递归都要重新计算前面(n-1)层递归,开销很大,比如:
求f(9)
要先求f(8) + f(7)
而f(8)= f(7) + f(6)
f(7)=f(6) + f(5)
...
为了节省这部分重复的开销,可以使用动态规划来解决这个问题。
4、动态规划实现递归
动态规划(dynamic programming)是运筹学的一个分支,是求解决策过程(decision process)最优化的数学方法。20世纪50年代初美国数学家R.E.Bellman等人在研究多阶段决策过程(multistep decision process)的优化问题时,提出了著名的最优化原理(principle of optimality),把多阶段过程转化为一系列单阶段问题,利用各阶段之间的关系,逐个求解,创立了解决这类过程优化问题的新方法——动态规划。
其基本思想也是将待求解问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解。如果我们能够保存已解决的子问题的答案,而在需要时再找出已求得的答案,这样就可以避免大量的重复计算,节省时间。我们可以用一个表来记录所有已解的子问题的答案。不管该子问题以后是否被用到,只要它被计算过,就将其结果填入表中。这就是动态规划法的基本思路。具体的动态规划算法多种多样,但它们具有相同的填表格式。
在python中的递归,可以使用字典来代替这个表。
'''
斐波那契数列:
f(n) = 1 当n = 1,2时
f(n) = f(n-1) + f(n-2) 当n > 2时
比如: [1,1,2,3,5,8,13,21,34,55]
'''
def fibonacci(n,temp={ }):
# 收敛条件
if n <= 2:
return 1
# 首先先从字典中取值
try:
return temp[n]
except KeyError:
# 如果字典中没有就先把值存进字典
temp[n] = fibonacci(n-1) + fibonacci(n-2)
return temp[n]
def main():
print(fibonacci(10))
if __name__ == '__main__':
main()
结果为:
55
使用动态规划解决:
一个小孩爬阶梯,一次有3种走法:一次走1个阶梯,一次走2个阶梯,一次走3个阶梯,问如果有10个阶梯总共有多少中走法?
def walk(steps,temp={}):
if steps < 0:
return 0
elif steps == 0:
return 1
try:
return temp[steps]
except KeyError:
temp[steps] = walk(steps - 1) + walk(steps - 2) + walk(steps - 3)
return temp[steps]
print(walk(10))
结果为:
274
5、使用装饰器测试递归函数用时
'''
斐波那契数列:
f(n) = 1 当n = 1,2时
f(n) = f(n-1) + f(n-2) 当n > 2时
比如: [1,1,2,3,5,8,13,21,34,55]
'''
from functools import wraps
import time
def func_time(func):
# 使用@wraps后可以还原原来的函数
# 即可以使用func.__wrapped__()来去掉装饰器
@wraps(func)
def wrapper(*arg,**kwargs):
# 第一层递归才输出时间
if kwargs['level'] == 0:
start = time.perf_counter()
result = func(*arg,**kwargs)
end = time.perf_counter()
print(f'Execution Time:{end-start}s')
return result
else:
return func(*arg,**kwargs)
return wrapper
@func_time
def fibonacci(n,temp={},*,level):
# 收敛条件
if n <= 2:
return 1
# 首先先从字典中取值
try:
return temp[n]
except KeyError:
level += 1
# 如果字典中没有就先把值存进字典
temp[n] = fibonacci(n-1,level=level) + fibonacci(n-2,level=level)
return temp[n]
def main():
print(fibonacci(121, level=0))
fib_19 = fibonacci.__wrapped__(19,level=0)
fib_20 = fibonacci.__wrapped__(20,level=0)
print(f'黄金比例:{fib_19/fib_20}')
if __name__ == '__main__':
main()
结果为:
Execution Time:0.0012316425773240605s
8670007398507948658051921
黄金比例:0.6180339985218034
注意1:能用循环写的代码一定不要使用递归。
注意2:如果用递归也尽量使用尾递归(只需要递归不需要回溯)和动态规划。
后记
【后记】为了让大家能够轻松学编程,我创建了一个公众号【轻松学编程】,里面有让你快速学会编程的文章,当然也有一些干货提高你的编程水平,也有一些编程项目适合做一些课程设计等课题。
也可加我微信【1257309054】,拉你进群,大家一起交流学习。
如果文章对您有帮助,请我喝杯咖啡吧!
公众号


关注我,我们一起成长~~
python中的递归的更多相关文章
- python中的递归问题,求圆周率
以上面一个公式为例: import numpy as np def getPi(n): if n == 0: return np.power(-1,n)*(1.0/(2*n+1)) else: ret ...
- Python中解决递归限制的问题
在做某些算法时,使用递归会出现类似下面的报错: RuntimeError: maximum recursion depth exceeded python默认的递归深度是很有限的,大概是900多的样子 ...
- python中使用递归实现反转链表
反转链表一般有两种实现方式,一种是循环,另外一种是递归,前几天做了一个作业,用到这东西了. 这里就做个记录,方便以后温习. 递归的方法: class Node: def __init__(self,i ...
- python中的递归小实例
#1.n! def fact(n): if n == 0: return 1 else: return n*fact(n-1)print(fact(10)) #2.斐波那契数列F(n)=F(n-1)+ ...
- Python中使用递归输出嵌套列表并转化为大写
- python中的归并排序
本来在博客上看到用python写的归并排序的程序,然后自己跟着他写了一下,结果发现是错的,不得不自己操作.而自己对python不是非常了解所以就变百度边写,最终在花了半个小时之后就写好了. def m ...
- Python中递归的最大次数
实际应用中遇到了一个python递归调用的问题,报错如下: RuntimeError: maximum recursion depth exceeded while calling a Python ...
- python中的迭代与递归
遇到一个情况,需要进行递归操作,但是呢递归次数非常大,有一万多次.先不说一万多次递归,原来的测试代码是java的,没装jdk和编译环境,还是用python吧 先看下原本的java代码: public ...
- python中的内置函数,递归,递归文件显示(二),二分法
1.部分内置函数 repr()显示出字符串的官方表示形式,返回一个对象的string形式 # repr 就是原封不动的输出, 引号和转义字符都不起作用 print(repr('大家好,\n \t我叫周 ...
随机推荐
- Hbuilder MUI 页面刷新及页面传值问题
一.页面刷新问题 1.父页面A跳转到子页面B,B页面修改数据后再跳回A页面,刷新A页面数据 (1).父页面A代码 window.addEventListener("pageflowrefre ...
- 关于 K210 MaixPy 的 I2C 读取设备,搜索不到设备,通信失败的一些原因以及解决方案。
近来对 amigo 开发期间的遇到 I2C 问题做一下总结. 我们发现有一些 I2C 设备搜索不到,主要原因是 DATA 的信号衰减,也可能是 I2C 的总线被拉住了. 软件层面的问题 例如在实现 A ...
- 012 01 Android 零基础入门 01 Java基础语法 02 Java常量与变量 06 浮点型“字面值”
012 01 Android 零基础入门 01 Java基础语法 02 Java常量与变量 06 浮点型"字面值" 浮点型字面值 首先要知道一点:在整型部分中,默认情况下,即整型数 ...
- 源码安装IVRE
简介:IVRE(又名DRUNK)是一款开源的网络侦查框架工具,IVRE使用Nmap.Zmap进行主动网络探测.使用Bro.P0f等进行网络流量被动分析,探测结果存入数据库中,方便数据的查询.分类汇总统 ...
- 别人写的很好Arduino教材
原文来自:https://www.arduino.cn/thread-31720-1-1.html 上一篇:Arduino教程--通过 库管理器 添加库 http://www.arduino.cn/t ...
- matlab中fft快速傅里叶变换
视频来源:https://www.bilibili.com/video/av51932171?t=628. 博文来源:https://ww2.mathworks.cn/help/matlab/ref/ ...
- Java 读取文件中的每一行,并为每一行插入特定的字符串
工具 1:Eclipse Java EE IDE for Web Developers. Version: Photon Release (4.8.0). Build id: 20180619-120 ...
- 【题解】[NOI2011]阿狸的打字机
阿狸的打字机 \(\text{Solution:}\) 首先观察三种操作:一种是插入一个字符,一种是退回上一步(回到父亲节点). 所以,我们可以对操作串进行模拟,并处理出每一个串在树上的位置. 接下来 ...
- linux 已放弃(吐核) (core dumped) 问题分析
在运行自己写的 C 多线程程序是,出现:已放弃(吐核) 问题. 出现这种问题一般是下面这几种情况: 1.内存越界 2.使用的非线程安全的函数 3.全局数据未加锁保护 4.非法指针 5.堆栈溢出 也就 ...
- CyclicBarrier原来是这样的
上一篇聊了一下Semaphore信号灯的用法及源码,这一篇来聊一下CyclicBarrier的用法及解析. 官网解释: 允许一组线程全部等待彼此达到共同屏障点的同步辅助.循环阻塞在涉及固定大小的线程方 ...