Summary-functions-and-maps

教程

在上一教程中,我们学习了如何从DataFrame或Series中选择相关数据。 正如我们在练习中所展示的,从我们的数据表示中提取正确的数据对于完成工作至关重要。
但是,数据并非总是以我们想要的格式从内存中出来的。 有时,我们必须自己做一些工作以将其重新格式化以解决当前的任务。 本教程将介绍我们可以应用于数据以获取“恰到好处”输入的各种操作。

Pandas提供了许多简单的“摘要功能”(不是官方名称),它们以某种有用的方式重组了数据。 例如,考虑一下describe()方法:

reviews.points.describe()

Output:

此方法生成给定列的属性的高级摘要。 它可识别类型,这意味着其输出根据输入的数据类型而变化。 上面的输出仅对数字数据有意义; 对于字符串数据,这是我们得到的:

如果要获取有关DataFrame或Series中某一列的某些特定的简单摘要统计信息,通常有一个有用的pandas函数可以实现此目的。
例如,要查看分配的分数的平均值(例如,平均评级的葡萄酒表现如何),我们可以使用mean()函数:

reviews.points.mean()

要查看唯一值的列表,我们可以使用unique()函数:

reviews.taster_name.unique()

要查看唯一值的列表以及它们在数据集中出现的频率,我们可以使用value_counts()方法:

reviews.taster_name.value_counts()

Maps

映射是一个从数学中借来的术语,表示一个函数,该函数采用一组值并将它们“映射”到另一组值。 在数据科学中,我们经常需要根据现有数据创建新的表示形式,或者将数据从现在的格式转换为我们希望其在以后使用的格式。 地图是处理这项工作的要素,这对完成工作极为重要!
您将经常使用两种映射方法。
map()是第一个,并且稍微简单一些。 例如,假设我们想将收到的葡萄酒的分数修正为0。我们可以这样做:

review_points_mean = reviews.points.mean()
reviews.points.map(lambda p: p - review_points_mean)

传递给map()的函数应该期望Series中的单个值(在上面的示例中为点值),并返回该值的转换版本。 map()返回一个新的Series,其中所有值都已由您的函数转换。
如果我们要通过在每一行上调用自定义方法来转换整个DataFrame,则apply()是等效的方法。

如:

def remean_points(row):
row.points = row.points - review_points_mean
return row reviews.apply(remean_points, axis='columns')

如果我们使用axis ='index'调用了reviews.apply(),则需要传递一个函数来转换每一列,而不是传递函数来转换每一行。
请注意,map()和apply()分别返回新的,转换后的Series和DataFrames。 他们不会修改被调用的原始数据。 如果我们查看评论的第一行,我们可以看到它仍然具有其原始积分值。

练习

1.

What is the median of the points column in the reviews DataFrame?

median_points = reviews["points"].median()

# Check your answer
q1.check()

2.

What countries are represented in the dataset? (Your answer should not include any duplicates.)

countries = reviews["country"].unique()

# Check your answer
q2.check()

3.

How often does each country appear in the dataset? Create a Series reviews_per_country mapping countries to the count of reviews of wines from that country.

reviews_per_country = reviews["country"].value_counts ()
print(reviews_per_country)
# Check your answer
q3.check()

4.

Create variable centered_price containing a version of the price column with the mean price subtracted.

(Note: this 'centering' transformation is a common preprocessing step before applying various machine learning algorithms.)

mid=reviews["price"].mean()
centered_price = reviews["price"].map(lambda x: x-mid) # Check your answer
q4.check()

5.

I'm an economical wine buyer. Which wine is the "best bargain"? Create a variable bargain_wine with the title of the wine with the highest points-to-price ratio in the dataset.

bargain_idx = (reviews.points / reviews.price).idxmax()
bargain_wine = reviews.loc[bargain_idx, 'title']
# Check your answer
q5.check()

6.

There are only so many words you can use when describing a bottle of wine. Is a wine more likely to be "tropical" or "fruity"? Create a Series descriptor_counts counting how many times each of these two words appears in the description column in the dataset.

n_trop = reviews.description.map(lambda desc: "tropical" in desc).sum()
n_fruity = reviews.description.map(lambda desc: "fruity" in desc).sum()
descriptor_counts = pd.Series([n_trop, n_fruity], index=['tropical', 'fruity'])
print(descriptor_counts)
# Check your answer
q6.check()

7.

We'd like to host these wine reviews on our website, but a rating system ranging from 80 to 100 points is too hard to understand - we'd like to translate them into simple star ratings. A score of 95 or higher counts as 3 stars, a score of at least 85 but less than 95 is 2 stars. Any other score is 1 star.

Also, the Canadian Vintners Association bought a lot of ads on the site, so any wines from Canada should automatically get 3 stars, regardless of points.

Create a series star_ratings with the number of stars corresponding to each review in the dataset.

def help(row):
if(row["country"]=="Canada"):
return 3
if(row["points"]>=95):
return 3
elif(row["points"]>=85):
return 2
else:
return 1 star_ratings = reviews.apply(help,axis='columns') print(star_ratings) # Check your answer
q7.check()

Kaggle-pandas(3)的更多相关文章

  1. 由Kaggle竞赛wiki文章流量预测引发的pandas内存优化过程分享

    pandas内存优化分享 缘由 最近在做Kaggle上的wiki文章流量预测项目,这里由于个人电脑配置问题,我一直都是用的Kaggle的kernel,但是我们知道kernel的内存限制是16G,如下: ...

  2. kaggle入门2——改进特征

    1:改进我们的特征 在上一个任务中,我们完成了我们在Kaggle上一个机器学习比赛的第一个比赛提交泰坦尼克号:灾难中的机器学习. 可是我们提交的分数并不是非常高.有三种主要的方法可以让我们能够提高他: ...

  3. Kaggle入门教程

    此为中文翻译版 1:竞赛 我们将学习如何为Kaggle竞赛生成一个提交答案(submisson).Kaggle是一个你通过完成算法和全世界机器学习从业者进行竞赛的网站.如果你的算法精度是给出数据集中最 ...

  4. 如何使用Python在Kaggle竞赛中成为Top15

    如何使用Python在Kaggle竞赛中成为Top15 Kaggle比赛是一个学习数据科学和投资时间的非常的方式,我自己通过Kaggle学习到了很多数据科学的概念和思想,在我学习编程之后的几个月就开始 ...

  5. kaggle数据挖掘竞赛初步--Titanic<原始数据分析&缺失值处理>

    Titanic是kaggle上的一道just for fun的题,没有奖金,但是数据整洁,拿来练手最好不过啦. 这道题给的数据是泰坦尼克号上的乘客的信息,预测乘客是否幸存.这是个二元分类的机器学习问题 ...

  6. kaggle& titanic代码

    这两天报名参加了阿里天池的’公交线路客流预测‘赛,就顺便先把以前看的kaggle的titanic的训练赛代码在熟悉下数据的一些处理.题目根据titanic乘客的信息来预测乘客的生还情况.给了titan ...

  7. 初窥Kaggle竞赛

    初窥Kaggle竞赛 原文地址: https://www.dataquest.io/mission/74/getting-started-with-kaggle 1: Kaggle竞赛 我们接下来将要 ...

  8. 逻辑回归应用之Kaggle泰坦尼克之灾(转)

    正文:14pt 代码:15px 1 初探数据 先看看我们的数据,长什么样吧.在Data下我们train.csv和test.csv两个文件,分别存着官方给的训练和测试数据. import pandas ...

  9. kaggle之Grupo Bimbo Inventory Demand

    Grupo Bimbo Inventory Demand kaggle比赛解决方案集合 Grupo Bimbo Inventory Demand 在这个比赛中,我们需要预测某个产品在某个销售点每周的需 ...

  10. kaggle之人脸特征识别

    Facial_Keypoints_Detection github code facial-keypoints-detection, 这是一个人脸识别任务,任务是识别人脸图片中的眼睛.鼻子.嘴的位置. ...

随机推荐

  1. 正则表达式以及sed,awk用法 附带案例

    则表达式 基本正则 ^    $    [  ]   [^]   .   *    \{n,m\}   \{n,\}    \(ro\)\{2\}   \(\)   扩展正则 egrep grep - ...

  2. flask 源码专题(四):wtforms Form实例化流程以及csrf验证

    class LoginForm(Form): #首先执行后得到的结果是UnboundField()对象 name=simple.StringField( label='用户名', validators ...

  3. 数据可视化之powerBI入门(七)数据清洗中最常使用的十三招

    https://mp.weixin.qq.com/s?__biz=MzA4MzQwMjY4MA==&mid=2484067158&idx=1&sn=4ad955112df2f4 ...

  4. python 并发专题(九):基础部分补充(一)进程

    概念 串行:所有的任务一个一个的完成. 并发:一个cpu完成多个任务.看起来像是同时完成. 并行:多个cpu执行多个任务,真正的同时完成. 阻塞:cpu遇到IO就是阻塞. 非阻塞:没有IO,就叫非阻塞 ...

  5. 爬虫05 /js加密/js逆向、常用抓包工具、移动端数据爬取

    爬虫05 /js加密/js逆向.常用抓包工具.移动端数据爬取 目录 爬虫05 /js加密/js逆向.常用抓包工具.移动端数据爬取 1. js加密.js逆向:案例1 2. js加密.js逆向:案例2 3 ...

  6. Ethical Hacking - NETWORK PENETRATION TESTING(13)

    Nmap Nmap is a network discovery tool that can be used to gather detailed information about any clie ...

  7. javascript : splice(0) 的妙用

    今天看前同事的代码,有个写法很有意思: splice(0). 有意思的是,这并不是一个“合法”的写法. w3school是这样写的: arrayObject.splice(index,howmany, ...

  8. 如何将 Bitbucket 的 pull request 签出到本地 review

    将 pull request 签出到本地进行 review, 最大的好处是可以通过 IDE 来查找各种变量和方法的上下文引用,以便充分发挥我们杠精的本领,将 pull request 中的各种合理和不 ...

  9. 一个startforresult的例子

    https://blog.csdn.net/qq_32521313/article/details/52451364

  10. menu目录下的navigation.xml

    <?xml version="1.0" encoding="utf-8"?><menu xmlns:android="http:// ...