#K-D Tree#洛谷 2093 [国家集训队]JZPFAR
题目
平面上有 \(n\) 个点。现在有 \(m\) 次询问,每次给定一个点 \((px, py)\) 和一个整数 \(k\),
输出 \(n\) 个点中离 \((px, py)\) 的距离第 \(k\) 大的点的标号。
如果有两个(或多个)点距离 \((px, py)\) 相同,那么认为标号较小的点距离较大。
分析
考虑用K-D Tree实现,维护区间横纵坐标最小值最大值,
至于第\(k\)远点对开一个大小为\(k\)的小根堆初始为极小值,
每次将最小的替换出去即可,注意还要比较标号
代码
#include <cstdio>
#include <cctype>
#include <algorithm>
#include <queue>
#define rr register
using namespace std;
const int N=200011;
typedef long long lll;
int ran,root,n,k;
struct Two{
lll w; int rk;
bool operator >(const Two &t)const{
return w>t.w||(w==t.w&&rk<t.rk);
}
bool operator <(const Two &t)const{
return w>t.w||(w==t.w&&rk<t.rk);
}
};
priority_queue<Two>q;
inline signed iut(){
rr int ans=0,f=1; rr char c=getchar();
while (!isdigit(c)) f=(c=='-')?-f:f,c=getchar();
while (isdigit(c)) ans=(ans<<3)+(ans<<1)+(c^48),c=getchar();
return ans*f;
}
inline void print(int ans){
if (ans<0) putchar('-'),ans=-ans;
if (ans>9) print(ans/10);
putchar(ans%10+48);
}
inline signed min(int a,int b){return a<b?a:b;}
inline lll max(lll a,lll b){return a>b?a:b;}
struct rec{
int p[3];
bool operator <(const rec &t)const{
return p[ran]<t.p[ran];
}
};
inline lll SQR(lll x){return x*x;}
struct KD_Tree{
int mn[N][2],mx[N][2],son[N][2]; rec p[N];
inline void pup(int now){
for (rr int i=0;i<2;++i){
mn[now][i]=mx[now][i]=p[now].p[i];
if (son[now][0]){
mn[now][i]=min(mn[now][i],mn[son[now][0]][i]);
mx[now][i]=max(mx[now][i],mx[son[now][0]][i]);
}
if (son[now][1]){
mn[now][i]=min(mn[now][i],mn[son[now][1]][i]);
mx[now][i]=max(mx[now][i],mx[son[now][1]][i]);
}
}
}
inline signed build(int l,int r,int Ran){
if (l>r) return 0;
rr int mid=(l+r)>>1;
ran=Ran,nth_element(p+l,p+mid,p+1+r);
son[mid][0]=build(l,mid-1,Ran^1);
son[mid][1]=build(mid+1,r,Ran^1);
pup(mid);
return mid;
}
inline lll calc(int t,int x){
return max(SQR(p[x].p[0]-mn[t][0]),SQR(p[x].p[0]-mx[t][0]))+max(SQR(p[x].p[1]-mn[t][1]),SQR(p[x].p[1]-mx[t][1]));
}
inline void query(int now,int x){
rr Two t=(Two){SQR(p[x].p[0]-p[now].p[0])+SQR(p[x].p[1]-p[now].p[1]),p[now].p[2]};
if (t>q.top()) q.pop(),q.push(t);
rr Two c0=(Two){calc(son[now][0],x),0};
rr Two c1=(Two){calc(son[now][1],x),0};
if (son[now][0]&&son[now][1]){
if (c0>c1&&c0>q.top()){
query(son[now][0],x);
if (c1>q.top()) query(son[now][1],x);
}else if (c1>q.top()){
query(son[now][1],x);
if (c0>q.top()) query(son[now][0],x);
}
}else if (son[now][0]){
if (c0>q.top()) query(son[now][0],x);
}else if (son[now][1]){
if (c1>q.top()) query(son[now][1],x);
}
}
}Tre;
signed main(){
n=iut();
for (rr int i=1;i<=n;++i) Tre.p[i].p[0]=iut(),Tre.p[i].p[1]=iut(),Tre.p[i].p[2]=i;
root=Tre.build(1,n,0);
for (rr int m=iut();m;--m){
Tre.p[n+1].p[0]=iut(),Tre.p[n+1].p[1]=iut();
while (!q.empty()) q.pop();
for (rr int kth=iut();kth;--kth)
q.push((Two){-1000000000000000000ll,0});
Tre.query(root,n+1),print(q.top().rk),putchar(10);
}
return 0;
}
#K-D Tree#洛谷 2093 [国家集训队]JZPFAR的更多相关文章
- 模板—点分治A(容斥)(洛谷P2634 [国家集训队]聪聪可可)
洛谷P2634 [国家集训队]聪聪可可 静态点分治 一开始还以为要把分治树建出来……• 树的结构不发生改变,点权边权都不变,那么我们利用刚刚的思路,有两种具体的分治方法.• A:朴素做法,直接找重心, ...
- 洛谷P1501 [国家集训队]Tree II(LCT,Splay)
洛谷题目传送门 关于LCT的其它问题可以参考一下我的LCT总结 一道LCT很好的练习放懒标记技巧的题目. 一开始看到又做加法又做乘法的时候我是有点mengbi的. 然后我想起了模板线段树2...... ...
- 洛谷P2619 [国家集训队2]Tree I(带权二分,Kruscal,归并排序)
洛谷题目传送门 给一个比较有逼格的名词--WQS二分/带权二分/DP凸优化(当然这题不是DP). 用来解决一种特定类型的问题: 有\(n\)个物品,选择每一个都会有相应的权值,需要求出强制选\(nee ...
- 洛谷 P1501 [国家集训队]Tree II 解题报告
P1501 [国家集训队]Tree II 题目描述 一棵\(n\)个点的树,每个点的初始权值为\(1\).对于这棵树有\(q\)个操作,每个操作为以下四种操作之一: + u v c:将\(u\)到\( ...
- [洛谷P1527] [国家集训队]矩阵乘法
洛谷题目链接:[国家集训队]矩阵乘法 题目背景 原 <补丁VS错误>请前往P2761 题目描述 给你一个N*N的矩阵,不用算矩阵乘法,但是每次询问一个子矩形的第K小数. 输入输出格式 输入 ...
- 洛谷 P1505 [国家集训队]旅游 树链剖分
目录 题面 题目链接 题目描述 输入输出格式 输入格式 输出格式 输入输出样例 输入样例: 输出样例: 说明 思路 AC代码 总结 题面 题目链接 P1505 [国家集训队]旅游 题目描述 Ray 乐 ...
- 洛谷 P1407 [国家集训队]稳定婚姻 解题报告
P1407 [国家集训队]稳定婚姻 题目描述 我国的离婚率连续7年上升,今年的头两季,平均每天有近5000对夫妇离婚,大城市的离婚率上升最快,有研究婚姻问题的专家认为,是与简化离婚手续有关. 25岁的 ...
- 洛谷 P1852 [国家集训队]跳跳棋 解题报告
P1852 [国家集训队]跳跳棋 题目描述 跳跳棋是在一条数轴上进行的.棋子只能摆在整点上.每个点不能摆超过一个棋子. 我们用跳跳棋来做一个简单的游戏:棋盘上有3颗棋子,分别在\(a\),\(b\), ...
- 洛谷 P1527 [国家集训队]矩阵乘法 解题报告
P1527 [国家集训队]矩阵乘法 题目描述 给你一个\(N*N\)的矩阵,不用算矩阵乘法,但是每次询问一个子矩形的第\(K\)小数. 输入输出格式 输入格式: 第一行两个数\(N,Q\),表示矩阵大 ...
- 洛谷 P1829 [国家集训队]Crash的数字表格 / JZPTAB 解题报告
[国家集训队]Crash的数字表格 / JZPTAB 题意 求\(\sum\limits_{i=1}^n\sum\limits_{j=1}^mlcm(i,j)\),\(n,m\le 10^7\) 鉴于 ...
随机推荐
- python模块imghdr-----推测图像类型
官方文档 https://docs.python.org/zh-cn/3/library/imghdr.html#module-imghdr 用处 模块推测文件或字节流中的图像的类型 imghdr.w ...
- SpringBoot Starter大全
spring Boot应用启动器基本的一共有44种,具体如下 1)spring-boot-starter 这是Spring Boot的核心启动器,包含了自动配置.日志和YAML. 2)spring-b ...
- Kubernetes:Pod 端口映射
本文为作者的 Kubernetes 系列电子书的一部分,电子书已经开源,欢迎关注,电子书浏览地址: https://k8s.whuanle.cn[适合国内访问] https://ek8s.whuanl ...
- 可视化技术在 Nebula Graph 中的应用
本文首发于 Nebula Graph Community 公众号 本文整理自 #可视化 on Live 主题直播,在本期直播中 3 位可视化嘉宾讲述了他们眼中的可视化,以及他们在可视化项目实践中踩过的 ...
- MongoDB下载和可视化工具NoSQL Manager for MongoDB 软件的下载,连接数据库
在官网下载MongoDB的版本为4.0.28,之前试了好几个高版本和低版本,都不行,最后,4.0.28版本好了.下载网页:https://www.mongodb.com/try/download/co ...
- [python]将多张图片合并为单个pdf文件
前言 最近有个个人需求是要把多个图片文件合并为一个PDF文件,这样方便用PDF阅读器连续看,避免界面点一下,只会图片放大.(比如看漫画) 主要思路是先把单张图片转换成单个PDF文件,然后把PDF文件进 ...
- 3.1蓝桥杯每日知识点,全排列permutation
next_permutation()函数 适用于生成当前序列的下一个排列 如果存在下一个排列,则将当前序列更改为下一个排列,并返回true 如果当前序列已经是最后一个排列,则将序列更改为第一个排列,并 ...
- Windows配置R语言、RStudio开发环境
本文介绍R语言及其集成开发环境RStudio的下载.安装方法. R语言是一个属于GNU操作系统的开源软件,在数据统计与分析.可视化等方面具有优秀的表现:而RStudio则是R语言的集成开发环境 ...
- BUUCTF—Crypto(完结版本—_—)
BUUCTF-Crypto 1.一眼就解密 考点:base64 我的解答: 字符串后面的等号,看来是base大家族,由字母和数字范围来看是base64,不管了,先扔CyberCher,仙女魔法棒变出f ...
- C++ //类模板与继承 //类模板与继承 //注意: //1.当子类继承父类是一个类模板时,子类在声名的时候,要指定出父类中T的类型 //2.如果不指定,编译器无法给子类分配内存 //3.如果想灵活指定出父类中的T的类型,子类也需要变为类模板
1 #include <iostream> 2 #include <string> 3 #include<fstream> 4 using namespace st ...