详解三维卷积

从一个例子开始,假如说不仅想检测灰度图像的特征,也想检测RGB彩色图像的特征。彩色图像如果是6×6×3,这里的3指的是三个颜色通道,可以把它想象成三个6×6图像的堆叠。为了检测图像的边缘或者其他的特征,不是把它跟原来的3×3的过滤器做卷积,而是跟一个三维的过滤器,它的维度是3×3×3,这样这个过滤器也有三层,对应红绿、蓝三个通道。

给这些起个名字(原图像),这里的第一个6代表图像高度,第二个6代表宽度,这个3代表通道的数目。同样过滤器也有一个高,宽和通道数,并且图像的通道数必须和过滤器的通道数匹配,所以这两个数(紫色方框标记的两个数)必须相等。接下来,就会知道这个卷积操作是如何进行的了,这个的输出会是一个4×4的图像,注意是4×4×1,最后一个数不是3了。

研究下这背后的细节,首先先换一张好看的图片。这个是6×6×3的图像,这个是3×3×3的过滤器,最后一个数字通道数必须和过滤器中的通道数相匹配。为了简化这个3×3×3过滤器的图像,不把它画成3个矩阵的堆叠,而画成这样,一个三维的立方体。

为了计算这个卷积操作的输出,要做的就是把这个3×3×3的过滤器先放到最左上角的位置,这个3×3×3的过滤器有27个数,27个参数就是3的立方。依次取这27个数,然后乘以相应的红绿蓝通道中的数字。先取红色通道的前9个数字,然后是绿色通道,然后再是蓝色通道,乘以左边黄色立方体覆盖的对应的27个数,然后把这些数都加起来,就得到了输出的第一个数字。

如果要计算下一个输出,把这个立方体滑动一个单位,再与这27个数相乘,把它们都加起来,就得到了下一个输出,以此类推。

那么,这个能干什么呢?举个例子,这个过滤器是3×3×3的,如果想检测图像红色通道的边缘,那么可以将第一个过滤器设为\(\begin{bmatrix}1 & 0 & - 1 \\ 1 & 0 & - 1 \\ 1 & 0 & - 1 \\\end{bmatrix}\),和之前一样,而绿色通道全为0,\(\begin{bmatrix} 0& 0 & 0 \\ 0 &0 & 0 \\ 0 & 0 & 0 \\\end{bmatrix}\),蓝色也全为0。如果把这三个堆叠在一起形成一个3×3×3的过滤器,那么这就是一个检测垂直边界的过滤器,但只对红色通道有用。

或者如果不关心垂直边界在哪个颜色通道里,那么可以用一个这样的过滤器,\(\begin{bmatrix}1 & 0 & - 1 \\ 1 & 0 & - 1 \\ 1 & 0 & - 1 \\ \end{bmatrix}\),\(\begin{bmatrix}1 & 0 & - 1 \\ 1 & 0 & - 1 \\ 1 & 0 & - 1 \\ \end{bmatrix}\),\(\begin{bmatrix}1 & 0 & - 1 \\ 1 & 0 & - 1 \\ 1 & 0 & - 1 \\\end{bmatrix}\),所有三个通道都是这样。所以通过设置第二个过滤器参数,就有了一个边界检测器,3×3×3的边界检测器,用来检测任意颜色通道里的边界。参数的选择不同,就可以得到不同的特征检测器,所有的都是3×3×3的过滤器。

按照计算机视觉的惯例,当输入有特定的高宽和通道数时,过滤器可以有不同的高,不同的宽,但是必须一样的通道数。理论上,过滤器只关注红色通道,或者只关注绿色或者蓝色通道也是可行的。

再注意一下这个卷积立方体,一个6×6×6的输入图像卷积上一个3×3×3的过滤器,得到一个4×4的二维输出。

现在已经了解了如何对立方体卷积,还有最后一个概念,对建立卷积神经网络至关重要。就是,如果不仅仅想要检测垂直边缘怎么办?如果同时检测垂直边缘和水平边缘,还有45°倾斜的边缘,还有70°倾斜的边缘怎么做?换句话说,如果想同时用多个过滤器怎么办?

让这个6×6×3的图像和这个3×3×3的过滤器卷积,得到4×4的输出。(第一个)这可能是一个垂直边界检测器或者是学习检测其他的特征。第二个过滤器可以用橘色来表示,它可以是一个水平边缘检测器。

所以和第一个过滤器卷积,可以得到第一个4×4的输出,然后卷积第二个过滤器,得到一个不同的4×4的输出。做完卷积,然后把这两个4×4的输出,取第一个把它放到前面,然后取第二个过滤器输出,把它画在这,放到后面。所以把这两个输出堆叠在一起,这样就都得到了一个4×4×2的输出立方体,可以把这个立方体当成,重新画在这,就是一个这样的盒子,所以这就是一个4×4×2的输出立方体。它用6×6×3的图像,然后卷积上这两个不同的3×3的过滤器,得到两个4×4的输出,它们堆叠在一起,形成一个4×4×2的立方体,这里的2的来源于用了两个不同的过滤器。

总结一下维度,如果有一个\(n \times n \times n_{c}\)(通道数)的输入图像,在这个例子中就是6×6×3,这里的\(n_{c}\)就是通道数目,然后卷积上一个\(f×f×n_{c}\),这个例子中是3×3×3,按照惯例,这个(前一个\(n_{c}\))和这个(后一个\(n_{c}\))必须数值相同。然后就得到了\((n-f+1)×(n-f+1)×n_{c^{'}}\),这里\(n_{c^{'}}\)其实就是下一层的通道数,它就是用的过滤器的个数,在例子中,那就是4×4×2。写下这个假设时,用的步幅为1,并且没有padding。如果用了不同的步幅或者padding,那么这个\(n-f+1\)数值会变化。

这个对立方体卷积的概念真的很有用,现在可以用它的一小部分直接在三个通道的RGB图像上进行操作。更重要的是,可以检测两个特征,比如垂直和水平边缘或者10个或者128个或者几百个不同的特征,并且输出的通道数会等于要检测的特征数。

对于这里的符号,一直用通道数(\(n_{c}\))来表示最后一个维度,在文献里大家也把它叫做3维立方体的深度。这两个术语,即通道或者深度,经常被用在文献中。但觉得深度容易让人混淆,因为通常也会说神经网络的深度。所以,在这里会用通道这个术语来表示过滤器的第三个维度的大小。

神经网络之卷积篇:详解三维卷积(Convolutions over volumes)的更多相关文章

  1. PHP函数篇详解十进制、二进制、八进制和十六进制转换函数说明

    PHP函数篇详解十进制.二进制.八进制和十六进制转换函数说明 作者: 字体:[增加 减小] 类型:转载   中文字符编码研究系列第一期,PHP函数篇详解十进制.二进制.八进制和十六进制互相转换函数说明 ...

  2. 走向DBA[MSSQL篇] 详解游标

    原文:走向DBA[MSSQL篇] 详解游标 前篇回顾:上一篇虫子介绍了一些不常用的数据过滤方式,本篇详细介绍下游标. 概念 简单点说游标的作用就是存储一个结果集,并根据语法将这个结果集的数据逐条处理. ...

  3. 基于双向BiLstm神经网络的中文分词详解及源码

    基于双向BiLstm神经网络的中文分词详解及源码 基于双向BiLstm神经网络的中文分词详解及源码 1 标注序列 2 训练网络 3 Viterbi算法求解最优路径 4 keras代码讲解 最后 源代码 ...

  4. Scala进阶之路-Scala函数篇详解

    Scala进阶之路-Scala函数篇详解 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.传值调用和传名调用 /* @author :yinzhengjie Blog:http: ...

  5. 第十五节,卷积神经网络之AlexNet网络详解(五)

    原文 ImageNet Classification with Deep ConvolutionalNeural Networks 下载地址:http://papers.nips.cc/paper/4 ...

  6. Deeplearning 两层cnn卷积网络详解

    https://blog.csdn.net/u013203733/article/details/79074452 转载地址: https://www.cnblogs.com/sunshineatno ...

  7. 神经网络基础部件-BN层详解

    一,数学基础 1.1,概率密度函数 1.2,正态分布 二,背景 2.1,如何理解 Internal Covariate Shift 2.2,Internal Covariate Shift 带来的问题 ...

  8. CentOS 7 下编译安装lnmp之PHP篇详解

    一.安装环境 宿主机=> win7,虚拟机 centos => 系统版本:centos-release-7-5.1804.el7.centos.x86_64 二.PHP下载 官网 http ...

  9. CentOS 7 下编译安装lnmp之MySQL篇详解

    一.安装环境 宿主机=> win7,虚拟机 centos => 系统版本:centos-release-7-5.1804.el7.centos.x86_64 二.MySQL下载 MySQL ...

  10. CentOS 7 下编译安装lnmp之nginx篇详解

    一.安装环境 宿主机=> win7,虚拟机 centos => 系统版本:CentOS Linux release 7.5.1804 (Core),ip地址 192.168.1.168   ...

随机推荐

  1. spring数据验证

    一般情况下,我们并不推荐在服务端做基础的数据校验,因为这有一个很主要的问题:它加重了服务器的负载,如果并发多,这种负载就更加明显. 如果我们跟踪一个简单的Controller方法执行过程,就会发现Sp ...

  2. WPF 做一个超级简单的 1024 数字接龙游戏

    这是一个我给自己做着玩的游戏,没有什么复杂的界面,就一些简单的逻辑 游戏的规则十分简单,那就是有多个列表.程序会给出一个数字,玩家决定数字放在哪个列表里面.如果放入列表里面的数字和列表里面最后一个数字 ...

  3. Apache Kylin(二)在EMR上搭建Kylin

    EMR上搭建kylin 1. 启动EMR集群 根据官网说明: http://kylin.apache.org/docs21/install/kylin_aws_emr.html 启动EMR时,若是 h ...

  4. Google 发布最新开放大语言模型 Gemma 2,现已登陆 Hugging Face Hub

    Google 发布了最新的开放大语言模型 Gemma 2,我们非常高兴与 Google 合作,确保其在 Hugging Face 生态系统中的最佳集成.你可以在 Hub 上找到 4 个开源模型(2 个 ...

  5. VS Code Go开发环境配置

    1.安装Go 下载网址:https://go.dev/doc/install 根据自己的操作系统来进行安装,官网针对Windows.Linux.macOS都有对应教程.安装完成后打开终端,输入go v ...

  6. 韦东山freeRTOS系列教程之【第十章】软件定时器(software timer)

    目录 系列教程总目录 概述 10.1 软件定时器的特性 10.2 软件定时器的上下文 10.2.1 守护任务 10.2.2 守护任务的调度 10.2.3 回调函数 10.3 软件定时器的函数 10.3 ...

  7. ubuntu16.04 python2&3 pip升级后报错:sys.stderr.write(f"ERROR: {exc}")

    ubuntu16.04 python2&3 pip升级后报错: sys.stderr.write(f"ERROR: {exc}") 描述 最近使用ubuntu16.04上的 ...

  8. [Java SE] Java-文件系统-常用文件路径的获取方法

    1 获取相对路径 /** * 获取相对路径 [推荐] * 使用Java提供的Path类和Paths类来获取相对路径. * 例如,假设有两个路径a和b,我们可以使用Path类的relativize()方 ...

  9. [oeasy]python0072_自定义小动物变色_cowsay_color_boxes_asciiart

    修改颜色 回忆上次内容 上次搞的是 颜色 前景颜色 总共有 7 种基本色 还有什么 好玩的 么? 可以 给小动物 上色 吗? 配合 先将cowsay结果 输出重定向 sudo apt install ...

  10. 前端太卷了,不玩了,写写node.js全栈涨工资,赶紧学起来吧!!!!!

    首先聊下node.js的优缺点和应用场景 Node.js的优点和应用场景 Node.js作为后端开发的选择具有许多优点,以下是其中一些: 高性能: Node.js采用了事件驱动.非阻塞I/O模型,使得 ...