WorkStation的网络损耗
WorkStation的网络损耗
背景
对周六遇到的问题进行了一下深入思考.
发现虽然可以通过WorkStation的方式来进行Clients以及新命令的扩容.
但是Workstation的桥接网络模式的性能不清楚有多大的损耗.
为了房子性能出现巨大的衰退.
这边进行了一下简要的测试与验证.
结论
Windows物理机 本地进行测试和使用linux远程测试 3.2.100 的QPS 都在 24000 左右.
比较稳定, linux上面的测试结果甚至要比 Windows本地测试的要稍微高一点
但是 Windows 上面的 WorkStation虚拟机就就存在问题.
虚拟机内直接的测试结果是 35000左右
在虚拟机外部使用桥接网络测试的结果只有 10000多一点.
桥接网络导致redis的QPS只有实际值的三分之一, 也只有Windows 上面 3.2.100 的 一半.
感觉桥接网络导致了非常大的性能损耗.




在远程的测试结果
PING_INLINE: 10070.49 requests per second, p50=1.935 msec
PING_MBULK: 10324.18 requests per second, p50=1.903 msec
SET: 10163.63 requests per second, p50=1.943 msec
GET: 10234.37 requests per second, p50=1.919 msec
INCR: 10114.29 requests per second, p50=1.935 msec
LPUSH: 9981.04 requests per second, p50=1.951 msec
RPUSH: 9984.03 requests per second, p50=1.967 msec
LPOP: 4917.63 requests per second, p50=2.015 msec
RPOP: 10145.07 requests per second, p50=1.935 msec
SADD: 11287.96 requests per second, p50=1.703 msec
HSET: 10566.36 requests per second, p50=1.911 msec
SPOP: 9944.31 requests per second, p50=1.951 msec
ZADD: 9992.01 requests per second, p50=1.967 msec
ZPOPMIN: 10371.29 requests per second, p50=1.887 msec
LPUSH (needed to benchmark LRANGE): 10228.09 requests per second, p50=1.919 msec
LRANGE_100 (first 100 elements): 8338.89 requests per second, p50=2.263 msec
LRANGE_300 (first 300 elements): 5620.19 requests per second, p50=3.255 msec
LRANGE_500 (first 500 elements): 4011.55 requests per second, p50=4.623 msec
LRANGE_600 (first 600 elements): 3725.37 requests per second, p50=4.991 msec
MSET (10 keys): 8932.56 requests per second, p50=2.079 msec
在本地的测试结果
PING_INLINE: 35714.29 requests per second, p50=0.287 msec
PING_MBULK: 35285.81 requests per second, p50=0.295 msec
SET: 35599.86 requests per second, p50=0.311 msec
GET: 35958.29 requests per second, p50=0.303 msec
INCR: 35958.29 requests per second, p50=0.303 msec
LPUSH: 35001.75 requests per second, p50=0.327 msec
RPUSH: 34734.29 requests per second, p50=0.319 msec
LPOP: 35523.98 requests per second, p50=0.327 msec
RPOP: 34940.60 requests per second, p50=0.319 msec
SADD: 35498.76 requests per second, p50=0.311 msec
HSET: 34364.26 requests per second, p50=0.319 msec
SPOP: 35816.62 requests per second, p50=0.303 msec
ZADD: 34411.56 requests per second, p50=0.335 msec
ZPOPMIN: 35211.27 requests per second, p50=0.303 msec
LPUSH (needed to benchmark LRANGE): 34566.20 requests per second, p50=0.319 msec
LRANGE_100 (first 100 elements): 22784.23 requests per second, p50=0.455 msec
LRANGE_300 (first 300 elements): 9814.51 requests per second, p50=1.031 msec
LRANGE_500 (first 500 elements): 6954.59 requests per second, p50=1.447 msec
LRANGE_600 (first 600 elements): 5993.41 requests per second, p50=1.671 msec
MSET (10 keys): 35100.04 requests per second, p50=0.391 msec
Windows 本地Redis3.2.100的测试结果
PING_INLINE: 22296.54 requests per second
PING_BULK: 22872.83 requests per second
SET: 22967.39 requests per second
GET: 23380.88 requests per second
INCR: 22246.94 requests per second
LPUSH: 23375.41 requests per second
RPUSH: 22862.37 requests per second
LPOP: 23239.60 requests per second
RPOP: 22794.62 requests per second
SADD: 23299.16 requests per second
SPOP: 23062.73 requests per second
LPUSH (needed to benchmark LRANGE): 23272.05 requests per second
LRANGE_100 (first 100 elements): 12515.64 requests per second
LRANGE_300 (first 300 elements): 7000.84 requests per second
LRANGE_500 (first 450 elements): 5093.21 requests per second
LRANGE_600 (first 600 elements): 4213.72 requests per second
MSET (10 keys): 19845.21 requests per second
Windows 远程测试结果
PING_INLINE: 21422.45 requests per second, p50=0.863 msec
PING_MBULK: 24348.67 requests per second, p50=0.759 msec
SET: 25201.61 requests per second, p50=0.743 msec
GET: 25933.61 requests per second, p50=0.719 msec
INCR: 26034.89 requests per second, p50=0.719 msec
LPUSH: 26581.61 requests per second, p50=0.703 msec
RPUSH: 24888.00 requests per second, p50=0.751 msec
LPOP: 25542.79 requests per second, p50=0.735 msec
RPOP: 25406.50 requests per second, p50=0.735 msec
SADD: 25621.32 requests per second, p50=0.735 msec
HSET: 25733.40 requests per second, p50=0.727 msec
SPOP: 25879.92 requests per second, p50=0.727 msec
ZADD: 25859.84 requests per second, p50=0.727 msec
WorkStation的网络损耗的更多相关文章
- VMware Workstation Pro网络配置(WiFi配置等)
常用技巧 连续按两下ctrl+alt,实现鼠标脱离 VMware Workstation Pro网络配置有几种模式: 桥接模式: 网络上的独立主机 占用路由器新IP资源 通过VMware Networ ...
- VMware Workstation中网络连接之桥接、NAT和Host-only
在Windows XP系统中,安装好VMware Workstation虚拟机软件以后,我们可以查看一下"网络连接"窗口: 在窗口中多出了两块网卡: VMware Network ...
- [VMware WorkStation]虚拟机网络
桥接模式下复制物理网络连接: 复制物理网卡连接状态,就是说把你指定的.本机的.真是网卡的状态信息复制给虚拟机的虚拟网卡,比如说你的本机真是网卡链接到了家用路由器的LAN口上,获得到了DHCP分配的地址 ...
- VMware Workstation的网络连接方式:NAT、桥接和Host Only
安装完VMware Workstation后会自动生成两个网络连接:VMware Network Adapter VMnet8 和 VMware Network Adapter VMnet1(通常称为 ...
- VMware workstation 虚拟网络 三种上网区别
以VMware workstation为例,其虚拟网络设备有3种: 第一种:vmnet0(桥接模式),无实体虚拟网卡,其实就是一个协议而已,会在对应网卡上加入VMware bridge protoco ...
- [转]VMware Workstation网络连接的三种模式
经常要使用VMWare Workstation来在本地测试不同的操作系统,以前也搞不清楚网络连接三种模式,最近看了几篇文章才算明白.现总结如下: 1. VMware Workstation的虚拟网络组 ...
- WMware workstation中几种网络连接的说明 【转】
博客来源:WMware workstation中几种网络连接的说明 VMware workstation中几种网络连接的说明 WMware workstation中网络连接包括,桥接模式.NAT模式. ...
- VMware workstation 网络选择 NAT模式 访问外网
多年不用本地做测试 尽然被 nat 模式給卡着了 :动手的还是所以要记录一下: 1.根据自己需求创建 虚拟机 之后: 配置[网络适配器] -- 选择 nat 模式 ( 选择网卡 ) 虚拟机 ...
- VMWare Workstation 配置docker多macvlan网络方法
VMWare Workstation 配置docker多macvlan网络方法 答案就是.....换VirtualBox 噗... VMWare Workstation host-only网络,三台虚 ...
- 转-深入理解VMware虚拟网络
原文出处:http://wangchunhai.blog.51cto.com/225186/381225 VMware Workstation是一款非常不错的虚拟机软件,许多爱好者用VMware Wo ...
随机推荐
- GetView介绍 以及 GetxController生命周期
etView 只是对已注册的 Controller 有一个名为 controller 的getter的 const Stateless 的 Widget,如果我们只有单个控制器作为依赖项,那我们就可以 ...
- C++篇:第十四章_编程_知识点大全
C++篇为本人学C++时所做笔记(特别是疑难杂点),全是硬货,虽然看着枯燥但会让你收益颇丰,可用作学习C++的一大利器 十四.编程 (一)概念 系统函数及其库是 C++语言所必须的,预处理命令不是 C ...
- Serverless 架构就不要服务器了?
摘要:Serverless 架构不是不要服务器了,而是依托第三方云服务平台,服务端逻辑运行在无状态的计算容器中,其业务层面的状态则被开发者使用的数据库和存储资源所记录. Serverless 是什么 ...
- 云图说丨什么是应用身份管理服务OneAccess
摘要: OneAccess是华为云提供的应用身份管理服务,具备集中式的身份管理.认证和授权能力,保证企业用户根据权限访问受信任的云端和本地应用系统,并对异常访问行为进行有效防范,真正做到事前预防.事中 ...
- 带你读AI论文:基于Transformer的直线段检测
摘要:本文提出了一种基于Transformer的端到端的线段检测模型.采用多尺度的Encoder/Decoder算法,可以得到比较准确的线端点坐标.作者直接用预测的线段端点和Ground truth的 ...
- VEGA:诺亚AutoML高性能开源算法集简介
摘要:VEGA是华为诺亚方舟实验室自研的全流程AutoML算法集合,提供架构搜索.超参优化.数据增强.模型压缩等全流程机器学习自动化基础能力. 本文分享自华为云社区<VEGA:诺亚AutoML高 ...
- 大数据 - ODS&DWD&DIM-SQL分享
大数据 ODS&DWD&DIM-SQL分享 需求 思路一:等差数列 断2天.3天,嵌套太多 1.1 开窗,按照 id 分组,同时按照 dt 排序,求 Rank -- linux 中空格 ...
- 使用port-forward本地访问k8s集群内redis
前言 通过kubectl port-forward端口转发,在本地机器上访问k8s集群内的服务/数据库,对开发.调试.定位bug都很有用. 每次都要查,这里记录一下. 步骤 当然首先要确保本地机器上安 ...
- 将nginx交给service管理
#!/bin/bash # chkconfig: 2345 99 99 prot=80 nginx=/usr/local/nginx/sbin/nginx check(){ ! $nginx -tq ...
- 2021InfoComm|钉钉会议 Rooms 的 "全场景" 智能化解决方案
InfoComm China 是亚太地区规模盛大的专业视听和集成体验解决方案商贸展会,提供前沿革新的产品和一系列高价值的技术展示. 在疫情期间,钉钉音视频支持了全国人民在线办公.在家上课,单日在线会议 ...