WorkStation的网络损耗
WorkStation的网络损耗
背景
对周六遇到的问题进行了一下深入思考.
发现虽然可以通过WorkStation的方式来进行Clients以及新命令的扩容.
但是Workstation的桥接网络模式的性能不清楚有多大的损耗.
为了房子性能出现巨大的衰退.
这边进行了一下简要的测试与验证.
结论
Windows物理机 本地进行测试和使用linux远程测试 3.2.100 的QPS 都在 24000 左右.
比较稳定, linux上面的测试结果甚至要比 Windows本地测试的要稍微高一点
但是 Windows 上面的 WorkStation虚拟机就就存在问题.
虚拟机内直接的测试结果是 35000左右
在虚拟机外部使用桥接网络测试的结果只有 10000多一点.
桥接网络导致redis的QPS只有实际值的三分之一, 也只有Windows 上面 3.2.100 的 一半.
感觉桥接网络导致了非常大的性能损耗.




在远程的测试结果
PING_INLINE: 10070.49 requests per second, p50=1.935 msec
PING_MBULK: 10324.18 requests per second, p50=1.903 msec
SET: 10163.63 requests per second, p50=1.943 msec
GET: 10234.37 requests per second, p50=1.919 msec
INCR: 10114.29 requests per second, p50=1.935 msec
LPUSH: 9981.04 requests per second, p50=1.951 msec
RPUSH: 9984.03 requests per second, p50=1.967 msec
LPOP: 4917.63 requests per second, p50=2.015 msec
RPOP: 10145.07 requests per second, p50=1.935 msec
SADD: 11287.96 requests per second, p50=1.703 msec
HSET: 10566.36 requests per second, p50=1.911 msec
SPOP: 9944.31 requests per second, p50=1.951 msec
ZADD: 9992.01 requests per second, p50=1.967 msec
ZPOPMIN: 10371.29 requests per second, p50=1.887 msec
LPUSH (needed to benchmark LRANGE): 10228.09 requests per second, p50=1.919 msec
LRANGE_100 (first 100 elements): 8338.89 requests per second, p50=2.263 msec
LRANGE_300 (first 300 elements): 5620.19 requests per second, p50=3.255 msec
LRANGE_500 (first 500 elements): 4011.55 requests per second, p50=4.623 msec
LRANGE_600 (first 600 elements): 3725.37 requests per second, p50=4.991 msec
MSET (10 keys): 8932.56 requests per second, p50=2.079 msec
在本地的测试结果
PING_INLINE: 35714.29 requests per second, p50=0.287 msec
PING_MBULK: 35285.81 requests per second, p50=0.295 msec
SET: 35599.86 requests per second, p50=0.311 msec
GET: 35958.29 requests per second, p50=0.303 msec
INCR: 35958.29 requests per second, p50=0.303 msec
LPUSH: 35001.75 requests per second, p50=0.327 msec
RPUSH: 34734.29 requests per second, p50=0.319 msec
LPOP: 35523.98 requests per second, p50=0.327 msec
RPOP: 34940.60 requests per second, p50=0.319 msec
SADD: 35498.76 requests per second, p50=0.311 msec
HSET: 34364.26 requests per second, p50=0.319 msec
SPOP: 35816.62 requests per second, p50=0.303 msec
ZADD: 34411.56 requests per second, p50=0.335 msec
ZPOPMIN: 35211.27 requests per second, p50=0.303 msec
LPUSH (needed to benchmark LRANGE): 34566.20 requests per second, p50=0.319 msec
LRANGE_100 (first 100 elements): 22784.23 requests per second, p50=0.455 msec
LRANGE_300 (first 300 elements): 9814.51 requests per second, p50=1.031 msec
LRANGE_500 (first 500 elements): 6954.59 requests per second, p50=1.447 msec
LRANGE_600 (first 600 elements): 5993.41 requests per second, p50=1.671 msec
MSET (10 keys): 35100.04 requests per second, p50=0.391 msec
Windows 本地Redis3.2.100的测试结果
PING_INLINE: 22296.54 requests per second
PING_BULK: 22872.83 requests per second
SET: 22967.39 requests per second
GET: 23380.88 requests per second
INCR: 22246.94 requests per second
LPUSH: 23375.41 requests per second
RPUSH: 22862.37 requests per second
LPOP: 23239.60 requests per second
RPOP: 22794.62 requests per second
SADD: 23299.16 requests per second
SPOP: 23062.73 requests per second
LPUSH (needed to benchmark LRANGE): 23272.05 requests per second
LRANGE_100 (first 100 elements): 12515.64 requests per second
LRANGE_300 (first 300 elements): 7000.84 requests per second
LRANGE_500 (first 450 elements): 5093.21 requests per second
LRANGE_600 (first 600 elements): 4213.72 requests per second
MSET (10 keys): 19845.21 requests per second
Windows 远程测试结果
PING_INLINE: 21422.45 requests per second, p50=0.863 msec
PING_MBULK: 24348.67 requests per second, p50=0.759 msec
SET: 25201.61 requests per second, p50=0.743 msec
GET: 25933.61 requests per second, p50=0.719 msec
INCR: 26034.89 requests per second, p50=0.719 msec
LPUSH: 26581.61 requests per second, p50=0.703 msec
RPUSH: 24888.00 requests per second, p50=0.751 msec
LPOP: 25542.79 requests per second, p50=0.735 msec
RPOP: 25406.50 requests per second, p50=0.735 msec
SADD: 25621.32 requests per second, p50=0.735 msec
HSET: 25733.40 requests per second, p50=0.727 msec
SPOP: 25879.92 requests per second, p50=0.727 msec
ZADD: 25859.84 requests per second, p50=0.727 msec
WorkStation的网络损耗的更多相关文章
- VMware Workstation Pro网络配置(WiFi配置等)
常用技巧 连续按两下ctrl+alt,实现鼠标脱离 VMware Workstation Pro网络配置有几种模式: 桥接模式: 网络上的独立主机 占用路由器新IP资源 通过VMware Networ ...
- VMware Workstation中网络连接之桥接、NAT和Host-only
在Windows XP系统中,安装好VMware Workstation虚拟机软件以后,我们可以查看一下"网络连接"窗口: 在窗口中多出了两块网卡: VMware Network ...
- [VMware WorkStation]虚拟机网络
桥接模式下复制物理网络连接: 复制物理网卡连接状态,就是说把你指定的.本机的.真是网卡的状态信息复制给虚拟机的虚拟网卡,比如说你的本机真是网卡链接到了家用路由器的LAN口上,获得到了DHCP分配的地址 ...
- VMware Workstation的网络连接方式:NAT、桥接和Host Only
安装完VMware Workstation后会自动生成两个网络连接:VMware Network Adapter VMnet8 和 VMware Network Adapter VMnet1(通常称为 ...
- VMware workstation 虚拟网络 三种上网区别
以VMware workstation为例,其虚拟网络设备有3种: 第一种:vmnet0(桥接模式),无实体虚拟网卡,其实就是一个协议而已,会在对应网卡上加入VMware bridge protoco ...
- [转]VMware Workstation网络连接的三种模式
经常要使用VMWare Workstation来在本地测试不同的操作系统,以前也搞不清楚网络连接三种模式,最近看了几篇文章才算明白.现总结如下: 1. VMware Workstation的虚拟网络组 ...
- WMware workstation中几种网络连接的说明 【转】
博客来源:WMware workstation中几种网络连接的说明 VMware workstation中几种网络连接的说明 WMware workstation中网络连接包括,桥接模式.NAT模式. ...
- VMware workstation 网络选择 NAT模式 访问外网
多年不用本地做测试 尽然被 nat 模式給卡着了 :动手的还是所以要记录一下: 1.根据自己需求创建 虚拟机 之后: 配置[网络适配器] -- 选择 nat 模式 ( 选择网卡 ) 虚拟机 ...
- VMWare Workstation 配置docker多macvlan网络方法
VMWare Workstation 配置docker多macvlan网络方法 答案就是.....换VirtualBox 噗... VMWare Workstation host-only网络,三台虚 ...
- 转-深入理解VMware虚拟网络
原文出处:http://wangchunhai.blog.51cto.com/225186/381225 VMware Workstation是一款非常不错的虚拟机软件,许多爱好者用VMware Wo ...
随机推荐
- JavaImprove--Lesson06--正则表达式
一.正则表达式的入门 正则表达式是一些特定支付组成的,代表一个规则,简化代码,以字符的形式体现规则 正则表达式,又称规则表达式,(Regular Expression,在代码中常简写为regex.re ...
- 文心一言 VS 讯飞星火 VS chatgpt (126)-- 算法导论11.1 1题
一.用go语言,假设一动态集合 S用一个长度为 m 的直接寻址表T来表示.请给出一个查找 S 中最大元素的过程.你所给的过程在最坏情况下的运行时间是多少? 文心一言,代码正常运行: 在这个问题中,我们 ...
- 手把手教你使用ModelArts的自动学习识别毒蘑菇分类
摘要:本文介绍了ModelArts如何通过自动学习进行毒蘑菇的识别. 想当年,白雪公主吃了毒蘑菇,换来了白马王子的一吻.如果白雪公主没有吃毒蘑菇,还会遇到白马王子吗?张小白觉得不见得--说不定她会遇到 ...
- 突破开源Redis的内存限制,存算分离的GaussDB到底有多能“装”?
摘要:GaussDB(for Redis)(下文简称高斯Redis)是华为云数据库团队自主研发的兼容Redis协议的云原生数据库,该数据库采用计算存储分离架构,突破开源Redis的内存限制,可轻松扩展 ...
- 云数据库 GaussDB(for Influx) 解密第十一期:让智能电网中时序数据处理更高效
摘要:GaussDB(for Influx)是一款基于计算存储分离架构,完全兼容 InfluxDB 生态的云原生时序数据库. 本文分享自华为云社区<云数据库 GaussDB(for Influx ...
- 中秋节,华为云AI送上超级大月亮制作教程,体验赢开发者键鼠套装
摘要:一键"Run in ModelArts",无需考虑计算资源.环境的搭建,简单运行代码,即可拥有你的超级大月亮,打造专属于你的梦幻中秋月夜. 本文分享自华为云社区<中秋节 ...
- 带你读顶会论文丨基于溯源图的APT攻击检测
摘要:本次分享主要是作者对APT攻击部分顶会论文阅读的阶段性总结,将从四个方面开展. 本文分享自华为云社区<[论文阅读] (10)基于溯源图的APT攻击检测安全顶会总结>,作者:eastm ...
- 前端资源共享方案对比-笔记:iframe/JS-SDK/微前端
前端页面资源如何分享,常见的有iframe,其次是js-sdk.这两类的在地图类工具经常用.微前端是最佳比较火的方式.本篇是他们的对比分析. 下一篇讲 BK-VISION如何在让用户自由选择 ifra ...
- 信创就用国产的生态,Solon v2.6.4 发布
Solon 是什么框架? Java 新的"生态级"应用开发框架.从零开始构建,有自己的标准规范与开放生态(历时六年,具备全球第二级别的生态规模). 相对于 Spring,有什么特点 ...
- Solon Aop 特色开发(4)Bean 扫描的三种方式
Solon,更小.更快.更自由!本系列专门介绍Solon Aop方面的特色: <Solon Aop 特色开发(1)注入或手动获取配置> <Solon Aop 特色开发(2)注入或手动 ...