题目链接

题目

题目描述

给定一棵有n个节点的无根树和m个操作,操作有2类:

1、将节点a到节点b路径上所有点都染成颜色c;

2、询问节点a到节点b路径上的颜色段数量(连续相同颜色被认为是同一段),如“112221” 由3段组成:“11” 、“222” 和“1” 。

请你写一个程序依次完成这m个操作。

输入描述

第一行包含2个整数n和m,分别表示节点数和操作数;

第二行包含n个正整数表示n个节点的初始颜色下面行每行包含两个整数x和y,表示x和y之间有一条无向边。

下面行每行描述一个操作:

“C a b c”表示这是一个染色操作,把节点a到节点b路径上所有点(包括a和b)都染成颜色c;

“Q a b”表示这是一个询问操作,询问节点a到节点b(包括a和b)路径上的颜色段数量。

输出描述

对于每个询问操作,输出一行答案。

示例1

输入

6 5
2 2 1 2 1 1
1 2
1 3
2 4
2 5
2 6
Q 3 5
C 2 1 1
Q 3 5
C 5 1 2
Q 3 5

输出

3
1
2

备注

对于100 的数据,\(1 \leq n, m \leq 10^5\) ,\(1 \leq w_i, c \leq 10^9\),\(1 \leq a, b, u, v \leq n\) ,op 一定为 C 或 Q,保证给出的图是一棵树。除原数据外,还存在一组不计分的 hack 数据。

题解

知识点:树链剖分,线段树。

与路径查询修改有关,显然需要树链剖分。

颜色段问题可以用懒标记线段树简单处理。注意如果合并时,两段线段的合并处颜色相同,那么段数为段数和减 \(1\) ,否则为段数和。

其中,一个关键是使用树剖查询时,需要注意合并方向,因为颜色段的左右端点是需要区别的。因此,我们可以开一个数组分别记录左右的答案。为了配合查询时的 \(u,v\) 交换操作,采用一个变量 \(pos\) 表示当前 \(u\) 处在初始的左还是右, \(ans[pos]\) 就表示 \(u\) 那一段的答案。最后一次合并时,涉及三段的合并,注意其中一段是需要反转的,将端点颜色交换即可。

时间复杂度 \(O(n \log n + m \log ^2 n)\)

空间复杂度 \(O(n)\)

代码

#include <bits/stdc++.h>
using namespace std;
using ll = long long; struct HLD {
vector<int> siz, dep, fat, son, top, dfn, L, R; HLD() {}
HLD(int rt, const vector<vector<int>> &g) { init(rt, g); }
void init(int rt, const vector<vector<int>> &g) {
assert(g.size() > rt);
int n = g.size() - 1;
siz.assign(n + 1, 0);
dep.assign(n + 1, 0);
fat.assign(n + 1, 0);
son.assign(n + 1, 0);
top.assign(n + 1, 0);
dfn.assign(n + 1, 0);
L.assign(n + 1, 0);
R.assign(n + 1, 0); function<void(int, int)> dfsA = [&](int u, int fa) {
siz[u] = 1;
dep[u] = dep[fa] + 1;
fat[u] = fa;
for (auto v : g[u]) {
if (v == fa) continue;
dfsA(v, u);
siz[u] += siz[v];
if (siz[v] > siz[son[u]]) son[u] = v;
}
};
dfsA(rt, 0); int dfncnt = 0;
function<void(int, int)> dfsB = [&](int u, int tp) {
top[u] = tp;
dfn[++dfncnt] = u;
L[u] = dfncnt;
if (son[u]) dfsB(son[u], tp);
for (auto v : g[u]) {
if (v == fat[u] || v == son[u]) continue;
dfsB(v, v);
}
R[u] = dfncnt;
};
dfsB(rt, rt);
}
}; template<class T, class F>
class SegmentTreeLazy {
int n;
vector<T> node;
vector<F> lazy; void push_down(int rt) {
node[rt << 1] = lazy[rt](node[rt << 1]);
lazy[rt << 1] = lazy[rt](lazy[rt << 1]);
node[rt << 1 | 1] = lazy[rt](node[rt << 1 | 1]);
lazy[rt << 1 | 1] = lazy[rt](lazy[rt << 1 | 1]);
lazy[rt] = F();
} void update(int rt, int l, int r, int x, int y, F f) {
if (r < x || y < l) return;
if (x <= l && r <= y) return node[rt] = f(node[rt]), lazy[rt] = f(lazy[rt]), void();
push_down(rt);
int mid = l + r >> 1;
update(rt << 1, l, mid, x, y, f);
update(rt << 1 | 1, mid + 1, r, x, y, f);
node[rt] = node[rt << 1] + node[rt << 1 | 1];
} T query(int rt, int l, int r, int x, int y) {
if (r < x || y < l) return T();
if (x <= l && r <= y) return node[rt];
push_down(rt);
int mid = l + r >> 1;
return query(rt << 1, l, mid, x, y) + query(rt << 1 | 1, mid + 1, r, x, y);
} public:
SegmentTreeLazy(int _n = 0) { init(_n); }
SegmentTreeLazy(const vector<T> &src) { init(src); } void init(int _n) {
n = _n;
node.assign(n << 2, T());
lazy.assign(n << 2, F());
}
void init(const vector<T> &src) {
assert(src.size() >= 2);
init(src.size() - 1);
function<void(int, int, int)> build = [&](int rt, int l, int r) {
if (l == r) return node[rt] = src[l], void();
int mid = l + r >> 1;
build(rt << 1, l, mid);
build(rt << 1 | 1, mid + 1, r);
node[rt] = node[rt << 1] + node[rt << 1 | 1];
};
build(1, 1, n);
} void update(int x, int y, F f) { update(1, 1, n, x, y, f); } T query(int x, int y) { return query(1, 1, n, x, y); }
}; struct T {
int lc = 0, rc = 0;
int cnt = 0;
friend T operator+(const T &a, const T &b) {
if (!a.cnt) return b;
if (!b.cnt) return a;
return {
a.lc, b.rc,
a.cnt + b.cnt - (a.rc == b.lc)
};
}
}; struct F {
int upd;
T operator()(const T &x) {
if (!upd) return x;
return {
upd, upd,
1,
};
}
F operator()(const F &g) {
if (!upd) return g;
return { upd };
}
}; const int N = 100007;
int c[N];
vector<int> g[N]; HLD hld;
SegmentTreeLazy<T, F> sgt; void path_update(int u, int v, int w) {
auto &top = hld.top;
auto &dep = hld.dep;
auto &L = hld.L;
auto &fat = hld.fat;
while (top[u] != top[v]) {
if (dep[top[u]] < dep[top[v]]) swap(u, v);
sgt.update(L[top[u]], L[u], { w });
u = fat[top[u]];
}
if (dep[u] > dep[v]) swap(u, v);
sgt.update(L[u], L[v], { w });
} int path_query(int u, int v) {
auto &top = hld.top;
auto &dep = hld.dep;
auto &L = hld.L;
auto &fat = hld.fat;
bool pos = 0;
T ans[2] = { T(),T() };
while (top[u] != top[v]) {
if (dep[top[u]] < dep[top[v]]) swap(u, v), pos ^= 1;
ans[pos] = sgt.query(L[top[u]], L[u]) + ans[pos];
u = fat[top[u]];
}
if (dep[u] > dep[v]) swap(u, v), pos ^= 1;
swap(ans[pos].lc, ans[pos].rc);
return (ans[pos] + sgt.query(L[u], L[v]) + ans[pos ^ 1]).cnt;
} int main() {
std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
int n, m;
cin >> n >> m;
for (int i = 1;i <= n;i++) cin >> c[i];
for (int i = 1;i <= n - 1;i++) {
int u, v;
cin >> u >> v;
g[u].push_back(v);
g[v].push_back(u);
} hld.init(1, vector<vector<int>>(g, g + n + 1));
vector<T> c_src(n + 1);
for (int i = 1;i <= n;i++) c_src[hld.L[i]] = { c[i],c[i],1 };
sgt.init(c_src); while (m--) {
char op;
int a, b;
cin >> op >> a >> b;
if (op == 'C') {
int c;
cin >> c;
path_update(a, b, c);
}
else cout << path_query(a, b) << '\n';
}
return 0;
}

NC20573 [SDOI2011]染色的更多相关文章

  1. BZOJ 2243: [SDOI2011]染色 [树链剖分]

    2243: [SDOI2011]染色 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 6651  Solved: 2432[Submit][Status ...

  2. bzoj-2243 2243: [SDOI2011]染色(树链剖分)

    题目链接: 2243: [SDOI2011]染色 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 6267  Solved: 2291 Descript ...

  3. 【BZOJ2243】[SDOI2011]染色 树链剖分+线段树

    [BZOJ2243][SDOI2011]染色 Description 给定一棵有n个节点的无根树和m个操作,操作有2类: 1.将节点a到节点b路径上所有点都染成颜色c: 2.询问节点a到节点b路径上的 ...

  4. bzoj2243:[SDOI2011]染色

    链剖就可以了.一开始的想法错了.但也非常接近了.妈呀调的要死...然后把字体再缩小一号查错起来比较容易QAQ. #include<cstdio> #include<cstring&g ...

  5. bzoj 2243 [SDOI2011]染色(树链剖分,线段树)

    2243: [SDOI2011]染色 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 4637  Solved: 1726[Submit][Status ...

  6. Bzoj 2243: [SDOI2011]染色 树链剖分,LCT,动态树

    2243: [SDOI2011]染色 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 5020  Solved: 1872[Submit][Status ...

  7. 2243: [SDOI2011]染色

    2243: [SDOI2011]染色 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 3113  Solved: 1204[Submit][Status ...

  8. bzoj 2243 [SDOI2011]染色(树链剖分+线段树合并)

    [bzoj2243][SDOI2011]染色 2017年10月20日 Description 给定一棵有n个节点的无根树和m个操作,操作有2类: 1.将节点a到节点b路径上所有点都染成颜色c: 2.询 ...

  9. [SDOI2011]染色

    [SDOI2011]染色 题目描述 输入输出格式 输出格式: 对于每个询问操作,输出一行答案. 解法 ps:这题本来是树剖的,但我用lct写的,以下是lct的写法,树剖会有所不同 我们考虑把不同色点的 ...

  10. bzoj2243[SDOI2011]染色 树链剖分+线段树

    2243: [SDOI2011]染色 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 9012  Solved: 3375[Submit][Status ...

随机推荐

  1. Dubbo入门2:Springboot+Dubbo2.6.0+ZooKeeper3.4.8整合

    整合Springboot+Dubbo2.6.0+ZooKeeper3.4.8 本文主要目的:记录整合以上3个框架的配置文件的写法 此文只在<Dubbo入门1>的基础上略作修改,仅记录修改的 ...

  2. 【C++】类概念及使用

    类定义中不允许对数据成员初始化 类外只能访问公有部分 类成员必须指定访问属性 类的成员函数是实现对封装的数据成员进行操作的唯一途径 类定义中不允许定义本类对象,因无法预知大小 类与结构形式相同,唯一区 ...

  3. 处理命令行main函数args参数

    引用 System.CommandLine 库(需要显示预览版才能看到) var fileOption = new Option<FileInfo?>( name: "--fil ...

  4. CPU信息查看的工具

    CPU信息查看的工具 背景 信创国产化如火如荼. CPU的型号其实越来越多 lscpu出来的结果其实太抽象, 对CPU的缓存架构显示不充分 今天在看大佬的文章是看到了一个工具: hwloc 感觉非常优 ...

  5. [转帖]jmeter 响应时间rt很小,但是tps也很小&jmeter,脚本处理,千万不要用js

    一.背景: 在压测的时候,查看jmeter聚合报告,发现rt很小,但是tps也很小. 讲道理来说,响应时间越小,tps应该越大. 一共压测10分钟,发现jmeter请求的样本数量非常小,才8500个请 ...

  6. file文件转为base64

    场景描述 在工作中,我们经常需要进行文件上传. 比如在进行图片上传的时候, 我们需要将上传的图片展示出来. 这个时候我们就需要将file文件转化为base64. 将file文件转化为base64 // ...

  7. 用webpack给js添加上版本号

    在网上查找了很多的资料. 都没有好的资源 因为我现在在项目是vuecli3.0 需要自己去创建文件 在项目的根目录下,创建一个文件vue.config.js 然后在该文件下写 const webpac ...

  8. 程序员必备!10款实用便捷的Git可视化管理工具

    前言 俗话说得好"工欲善其事,必先利其器",合理的选择和使用可视化的管理工具可以降低技术入门和使用的门槛.我们在团队开发中统一某个开发工具的使用能够大大降低沟通成本,提高协作沟通效 ...

  9. AppCan 打包无限次下载解决方案

    1.下载AppCan 官网上打包好的文件apk文件 2.将apk文件放在指定的服务器文件内,谇文件发布到IIS,一般都会用已发布发的网站上面随便一个目录就可以了. 3.MIME类型中填写apk的MIM ...

  10. 关于 const

    const 限定符 在编译器中限制变量,设定该变量不可被改变,但实际上系统里还是将由 const 修饰的值识别为一个变量(只是在编译器中进行限制) 注意: 由 const 修饰的变量必须在定义时就进行 ...