[ABC246A] Four Points
Problem Statement
There is a rectangle in the $xy$-plane. Each edge of this rectangle is parallel to the $x$- or $y$-axis, and its area is not zero.
Given the coordinates of three of the four vertices of this rectangle, $(x_1, y_1)$, $(x_2, y_2)$, and $(x_3, y_3)$, find the coordinates of the other vertex.
Constraints
- $-100 \leq x_i, y_i \leq 100$
- There uniquely exists a rectangle with all of $(x_1, y_1)$, $(x_2, y_2)$, $(x_3, y_3)$ as vertices, edges parallel to the $x$- or $y$-axis, and a non-zero area.
- All values in input are integers.
Input
Input is given from Standard Input in the following format:
$x_1$ $y_1$
$x_2$ $y_2$
$x_3$ $y_3$
Output
Print the sought coordinates $(x, y)$ separated by a space in the following format:
$x$ $y$
Sample Input 1
-1 -1
-1 2
3 2
Sample Output 1
3 -1
The other vertex of the rectangle with vertices $(-1, -1), (-1, 2), (3, 2)$ is $(3, -1)$.
Sample Input 2
-60 -40
-60 -80
-20 -80
Sample Output 2
-20 -40
可以用异或找到不同的那一个。
#include<cstdio>
int x1,y1,x2,y2,x3,y3;
int main()
{
scanf("%d%d%d%d%d%d",&x1,&y1,&x2,&y2,&x3,&y3);
printf("%d %d",x1^x2^x3,y1^y2^y3);
}
[ABC246A] Four Points的更多相关文章
- 有理数的稠密性(The rational points are dense on the number axis.)
每一个实数都能用有理数去逼近到任意精确的程度,这就是有理数的稠密性.The rational points are dense on the number axis.
- [LeetCode] Max Points on a Line 共线点个数
Given n points on a 2D plane, find the maximum number of points that lie on the same straight line. ...
- LeetCode:Max Points on a Line
题目链接 Given n points on a 2D plane, find the maximum number of points that lie on the same straight l ...
- K closest points
Find the K closest points to a target point in a 2D plane. class Point { public int x; public int y; ...
- 【leetcode】Max Points on a Line
Max Points on a Line 题目描述: Given n points on a 2D plane, find the maximum number of points that lie ...
- Max Points on a Line
Given n points on a 2D plane, find the maximum number of points that lie on the same straight line. ...
- [LeetCode OJ] Max Points on a Line
Max Points on a Line Submission Details 27 / 27 test cases passed. Status: Accepted Runtime: 472 ms ...
- [UCSD白板题] Points and Segments
Problem Introduction The goal in this problem is given a set of segments on a line and a set of poin ...
- [UCSD白板题] Covering Segments by Points
Problem Introduction You are given a set of segments on a line and your goal is to mark as few point ...
- [javascript svg fill stroke stroke-width points polygon属性讲解] svg fill stroke stroke-width points polygon绘制多边形属性并且演示polyline和polygon区别讲解
<!DOCTYPE html> <html lang='zh-cn'> <head> <title>Insert you title</title ...
随机推荐
- GaussDB技术解读系列:高安全之密态等值
本文分享自华为云社区< DTCC 2023专家解读 | GaussDB技术解读系列:高安全之密态等值>,作者:GaussDB 数据库. 近日,在第14届中国数据库技术大会(DTCC2023 ...
- API接口设计规范,看这篇就足以了
优秀的设计是产品变得卓越的原因.设计API意味着提供有效的接口,可以帮助API使用者更好地了解.使用和集成,同时帮助人们有效地维护它.每个产品都需要使用手册,API也不例外. 在API领域,可以将 ...
- EtherCAT转Modbus网关用Modbus Slave模拟从站配置案例
EtherCAT转Modbus网关用Modbus Slave模拟从站配置案例 兴达易控EtherCAT到Modbus网关可以用作Modbus从站的配置.EtherCAT到Modbus网关允许Modbu ...
- Q-REG论文阅读
Q-REG Jin, S., Barath, D., Pollefeys, M., & Armeni, I. (2023). Q-REG: End-to-End Trainable Point ...
- 在macOS上,可以使用以下步骤来清理本地多个版本的Python:
确认已经安装了Homebrew 如果您还没有安装Homebrew,可以在终端中运行以下命令进行安装: /bin/bash -c "$(curl -fsSL https://raw.githu ...
- 循序渐进介绍基于CommunityToolkit.Mvvm 和HandyControl的WPF应用端开发(9) -- 实现系统动态菜单的配置和权限分配
在WPF应用端开发,它的界面类似于Winform端,因此我们也需要对系统的菜单进行动态配置,这样才能把系统的功能弹性发挥到极致,通过动态菜单的配置方式,我们可以很容易的为系统新增所需的功能,通过权限分 ...
- camerabin error:"Internal data stream error,使用QT打开MIPI摄像头
使用QT自带的QCamera打开MIPI摄像头 遇到:camerabin error:"Internal data stream error 降低分辨率为640*480 TRANSLATE ...
- Codeforces Round 856 (Div. 2)C
C. Scoring Subsequences 思路:我们想要找到满足的最大值的长度最长的的区间,因为单调不减,所以更大的数一定在最大值的里面包含,所以我们用两个指针维护这样一个满足当前i的最大值区间 ...
- C++快读、快写模版
inline int read() { char ch = getchar(); int x = 0,f = 1; while (!isdigit(ch)) if (ch == '-') f = -1 ...
- golang在win10安装、环境配置 和 goland开发工具golang配置 及Terminal的git配置
前言 本人在使用goland软件开发go时,对于goland软件配置网上资料少,为了方便自己遗忘.也为了希望和我一样的小白能够更好的使用,所以就写下这篇博客,废话不多说开搞. 一.查看自己电脑系统版本 ...