转载自:https://www.cnblogs.com/itboys/p/7603634.html

在HBase读写时,相同Cell(RowKey/ColumnFamily/Column相同)并不保证在一起,甚至删除一个Cell也只是写入一个新的Cell,它含有Delete标记,而不一定将一个Cell真正删除了,因而这就引起了一个问题,如何实现读的问题?要解决这个问题,我们先来分析一下相同的Cell可能存在的位置:首先对新写入的Cell,它会存在于MemStore中;然后对之前已经Flush到HDFS中的Cell,它会存在于某个或某些StoreFile(HFile)中;最后,对刚读取过的Cell,它可能存在于BlockCache中。既然相同的Cell可能存储在三个地方,在读取的时候只需要扫瞄这三个地方,然后将结果合并即可(Merge Read),在HBase中扫瞄的顺序依次是:BlockCache、MemStore、StoreFile(HFile)。其中StoreFile的扫瞄先会使用Bloom Filter过滤那些不可能符合条件的HFile,然后使用Block Index快速定位Cell,并将其加载到BlockCache中,然后从BlockCache中读取。我们知道一个HStore可能存在多个StoreFile(HFile),此时需要扫瞄多个HFile,如果HFile过多又是会引起性能问题。

Compaction

MemStore每次Flush会创建新的HFile,而过多的HFile会引起读的性能问题,那么如何解决这个问题呢?HBase采用Compaction机制来解决这个问题,有点类似Java中的GC机制,起初Java不停的申请内存而不释放,增加性能,然而天下没有免费的午餐,最终我们还是要在某个条件下去收集垃圾,很多时候需要Stop-The-World,这种Stop-The-World有些时候也会引起很大的问题,比如参考本人写的这篇文章,因而设计是一种权衡,没有完美的。还是类似Java中的GC,在HBase中Compaction分为两种:Minor Compaction和Major Compaction。

  • Minor Compaction是指选取一些小的、相邻的StoreFile将他们合并成一个更大的StoreFile,在这个过程中不会处理已经Deleted或Expired的Cell。一次Minor Compaction的结果是更少并且更大的StoreFile。
  • Major Compaction是指将所有的StoreFile合并成一个StoreFile,在这个过程中,标记为Deleted的Cell会被删除,而那些已经Expired的Cell会被丢弃,那些已经超过最多版本数的Cell会被丢弃。一次Major Compaction的结果是一个HStore只有一个StoreFile存在。Major Compaction可以手动或自动触发,然而由于它会引起很多的IO操作而引起性能问题,因而它一般会被安排在周末、凌晨等集群比较闲的时间。

更形象一点,如下面两张图分别表示Minor Compaction和Major Compaction。

HRegion Split

最初,一个Table只有一个HRegion,随着数据写入增加,如果一个HRegion到达一定的大小,就需要Split成两个HRegion,这个大小由hbase.hregion.max.filesize指定,默认为10GB。当split时,两个新的HRegion会在同一个HRegionServer中创建,它们各自包含父HRegion一半的数据,当Split完成后,父HRegion会下线,而新的两个子HRegion会向HMaster注册上线,处于负载均衡的考虑,这两个新的HRegion可能会被HMaster分配到其他的HRegionServer中。关于Split的详细信息,可以参考这篇文章:《Apache HBase Region Splitting and Merging》。

HRegion负载均衡

在HRegion Split后,两个新的HRegion最初会和之前的父HRegion在相同的HRegionServer上,出于负载均衡的考虑,HMaster可能会将其中的一个甚至两个重新分配的其他的HRegionServer中,此时会引起有些HRegionServer处理的数据在其他节点上,直到下一次Major Compaction将数据从远端的节点移动到本地节点。

HRegionServer Recovery

当一台HRegionServer宕机时,由于它不再发送Heartbeat给ZooKeeper而被监测到,此时ZooKeeper会通知HMaster,HMaster会检测到哪台HRegionServer宕机,它将宕机的HRegionServer中的HRegion重新分配给其他的HRegionServer,同时HMaster会把宕机的HRegionServer相关的WAL拆分分配给相应的HRegionServer(将拆分出的WAL文件写入对应的目的HRegionServer的WAL目录中,并并写入对应的DataNode中),从而这些HRegionServer可以Replay分到的WAL来重建MemStore。

HBase架构简单总结

在NoSQL中,存在著名的CAP理论,即Consistency、Availability、Partition Tolerance不可全得,目前市场上基本上的NoSQL都采用Partition Tolerance以实现数据得水平扩展,来处理Relational DataBase遇到的无法处理数据量太大的问题,或引起的性能问题。因而只有剩下C和A可以选择。HBase在两者之间选择了Consistency,然后使用多个HMaster以及支持HRegionServer的failure监控、ZooKeeper引入作为协调者等各种手段来解决Availability问题,然而当网络的Split-Brain(Network Partition)发生时,它还是无法完全解决Availability的问题。从这个角度上,Cassandra选择了A,即它在网络Split-Brain时还是能正常写,而使用其他技术来解决Consistency的问题,如读的时候触发Consistency判断和处理。这是设计上的限制。

实现上的优点:

  • HBase采用强一致性模型,在一个写返回后,保证所有的读都读到相同的数据。
  • 通过HRegion动态Split和Merge实现自动扩展,并使用HDFS提供的多个数据备份功能,实现高可用性。
  • 采用HRegionServer和DataNode运行在相同的服务器上实现数据的本地化,提升读写性能,并减少网络压力。
  • 内建HRegionServer的宕机自动恢复。采用WAL来Replay还未持久化到HDFS的数据。
  • 可以无缝的和Hadoop/MapReduce集成。

实现上的缺点:

  • WAL的Replay过程可能会很慢。
  • 灾难恢复比较复杂,也会比较慢。
  • Major Compaction会引起IO Storm。

hbase架构和读写过程的更多相关文章

  1. Hbase架构和读写流程

    转载自:http://www.cnblogs.com/muzili-ykt/p/muzili_ykt.html 在HBase读写时,相同Cell(RowKey/ColumnFamily/Column相 ...

  2. hbase的读写过程

    hbase的读写过程: hbase的架构: Hbase真实数据hbase真实数据存储在hdfs上,通过配置文件的hbase.rootdir属性可知,文件在/user/hbase/下hdfs dfs - ...

  3. HBase 文件读写过程描述

    HBase 数据读写过程描述 我们熟悉的在 Hadoop 使用的文件格式有许多种,例如: Avro:用于 HDFS 数据序序列化与 Parquet:常见于 Hive 数据文件保存在 HDFS中 HFi ...

  4. HBase的简单介绍,寻址过程,读写过程

    HBase是列族数据库,主要由,表,行键,列族,列标识,值,时间戳 组成,         表   其中HBase 主要底层存储依赖与hdfs,可以在HDFS中看到每个表名都作为一个独立的目录结构   ...

  5. HBASE架构解析(二)

    http://www.blogjava.net/DLevin/archive/2015/08/22/426950.html HBase读的实现 通过前文的描述,我们知道在HBase写时,相同Cell( ...

  6. HBASE架构解析(一)

    http://www.blogjava.net/DLevin/archive/2015/08/22/426877.html 前记 公司内部使用的是MapR版本的Hadoop生态系统,因而从MapR的官 ...

  7. HBase架构深度解析

    原文出处: DLevin(@雪地脚印_) 前记 公司内部使用的是MapR版本的Hadoop生态系统,因而从MapR的官网看到了这篇文文章:An In-Depth Look at the HBase A ...

  8. Hbase架构与原理

    Hbase架构与原理 HBase是一个分布式的.面向列的开源数据库,该技术来源于 Fay Chang所撰写的Google论文"Bigtable:一个结构化数据的分布式存储系统".就 ...

  9. 深入了解HBASE架构(转)

    dd by zhj: 最近的工作需要跟HBase打交道,所以花时间把<HBase权威指南>粗略看了一遍,感觉不过瘾,又从网上找了几篇经典文章. 下面这篇就是很经典的文章,对HBase的架构 ...

随机推荐

  1. DevOps is Hard、DevSecOps is Even Harder . --- Enterprise Holdings

    Enterprise Holdings. 的IT团队超过2000人,在2018年的演讲中介绍了Enterprise Holdings的DevOps是如何转型的.我们通过打造一个不只包涵了pipelin ...

  2. 优化webpack构建时间的小技巧

    在之前工作的地方,我们一直使用webpck去构建.但是,经过长达四年的更新迭代,每个人都在同一个项目中做了不同的操作和更新,这导致我们生产构建时间达到了惊人的一分半,watch模式的rebuild也达 ...

  3. cogs 3008. 朋友圈

    3008. 朋友圈 ★★   输入文件:friendscircle.in   输出文件:friendscircle.out   简单对比时间限制:1 s   内存限制:256 MB [题目描述] NO ...

  4. crawler碎碎念6 豆瓣爬取操作之获取数据

    import requests from lxml import etree s = requests.Session() for id in range(0,251,25): url ='https ...

  5. IDEA中的JUNIT测试

    安装插件 Ctrl+Alt+s→Plugins→junitgenerator v2.0 Alt+insert 选中JUnit test 中JUnit4 package test.com.demo.co ...

  6. python类型-序列-字符串

    python中单引号和双引号的含义是一样的.字符串是一种直接量或者说是一种标量,是不可变类型,字符串是由独立的字符组成的,并且这些字符可以通过切片操作顺序的访问. python实际有三类字符串:通常意 ...

  7. Mac 查看端口占用情况及杀死进程

    查看端口占用情况命令 sudo lsof -i :9000 冒号后面就是你需要查看的端口号. TheEternityZhang-MacBook:project zhtony$ sudo lsof -i ...

  8. beta版本发布说明与总结

    1.发布说明: 软件介绍: deta版本的发布最终是一个可安装使用的窗体程序,已经由Alpha版本的应用解决方案完成到一个程序: deta版本解决了Alpha版本遗留的软件技术方面错误问题,以及针对有 ...

  9. Day2-Python3基础-文件操作

    1. 字符编码与转码 需知: 1.在python3默认编码是unicode 2.unicode 分为 utf-32(占4个字节),utf-16(占两个字节),utf-8(占1-4个字节), so ut ...

  10. tarjan求割点与割边

    tarjan求割点与割边 洛谷P3388 [模板]割点(割顶) 割点 解题思路: 求割点和割点数量模版,对于(u,v)如果low[v]>=dfn[u]那么u为割点,特判根结点,若根结点子树有超过 ...