Introduction

(1)Motivation:

当前采用CNN-RNN模型解决行人重识别问题仅仅提取单一视频序列的特征表示,而没有把视频序列匹配间的影响考虑在内,即在比较不同人的时候,根据不同的行人关注不同的部位,如下图:

(2)Contribution:

将注意力模型考虑进行人重识别中,提出了时空联合注意力池化网络(jointly Attentive Spatial-Temporal Pooling Networks,ASTPN).

The Proposed Model Architecture

(1)简述:

建立了时空注意力网络(a recurrent-convolutional network with jointly attentive spatial-temporal pooling,ASTPN),其工作原理是:将一对视频序列传入孪生神经网络,获得两者的特征表示,并生成它们的欧几里德距离。如图所示,每个输入(包含光流的视频帧)通过CNN网络,并从最后一个卷积层中提取出特征映射。然后将这些特征映射输入到空间池层中,每一个时间步获得一个图像表示。然后,我们把时间信息考虑在内,利用循环神经网络生成视频序列的特征集。最后,由循环神经网络产生的所有时间步被注意力时间池结合起来,形成序列特征表示。

(2)卷积层:

输入:网络的输入由三个彩色通道和两个光流组成。颜色通道提供服装和背景等空间信息,而光流通道提供时间运动信息。给定输入序列 v = {v1, …, vT},我们利用下表所示的卷积网络获得特征映射集 C = {C1,…,CT}。然后将每个 CiRc×w×h 输入空间池化层,得到图像级表示 ri

(3)空间池化层(Spatial Pooling Layer):

使用空间金字塔池化(SPP)层来组成空间注意力池,具体如下:

假设池化核大小集为{(mwj, mhj)| j = 1, …, n},则确定第 个池化核窗口大小:

第 个池化步长为:

然后通过公式得到结果向量 ri

其中 f表示采用窗口大小 win 和步长 str 的最大池化函数。f表示重构函数,将矩阵重构成一个向量。除此之外,⊕ 表示向量连接操作。

令一个序列表示为r = {riRL | i = 1, …, T},其中:

(4)注意力时间池化层(Attentive Temporal Pooling Layer)

将上一层得到的 r 输入到循环神经网络提取时间步信息,循环层可以计算表示为:

其中 st-1R是包含上一时间步信息的隐藏层结点,o是时间t的输出。全连接权重 U∈RL*N 将循环层输入 r从 R映射到 RN,全连接权重 WRN*N 将隐藏层结点 st-1 从 R映射到 R。注意到循环层通过矩阵U将特征向量嵌入到低维特征中。在第一个时间步中,隐藏层结点被初始化为0,隐藏层通过tanh函数激活传递。

定义矩阵 PRT*N 和 GRT*N,其第 行分别表示检测数据和对照数据在循环网络的第 个时间步的输出,我们计算注意力矩阵 ART*T

其中 URN*N 是网络学习的信息分享感知矩阵。

之后,对 分别应用列最大池化和行最大池化来获得时间权重向量 tpR和 tgRTt的第 个元素表示探测序列中第 i 帧的重要得分,t同理。再对时间权重向量 t和 t应用softmax函数,来生成注意力向量 apR和 agRTa的第 个元素可以计算为:

最后,应用 P和 apa之间的点乘来获得序列级表示 vpR和 vgRN,分别计算为:

(5)损失函数:思想与上篇论文类似【传送门

孪生神经网络的铰链损失:

将识别身份的损失考虑在内,训练目标为:

Experimental Results

(1)实验设置:

① 数据集:iLIDS-VID、PRID-2011、MARS

② 参数设置:截取的帧数 k = 18,孪生代价函数的边距 m = 3,特征空间维数为128,初始学习率0.001,批量设置为1.

③ 对比方法:RNN-CNN、RFA、VR、AFDA

(2)预处理:

① 裁剪、镜像来增强数据,裁剪后的子图像的宽度和长度都比原图像小8个像素,在整个序列随机使用镜像操作,概率 p=0.5。

② 将图像精确地转换为YUV颜色空间,并将每个颜色通道归一化为零均值和单位方差;使用Lucas-Kanade方法在每对相邻图像之间提取垂直和水平的光流,然后提取光流通道正规化为[-1, 1]

(3)实验结果:

① 与对比方法比较:

② 在MARS数据集上结果:

③ 不同池化策略的比较:

④ 交叉数据集上测试结果:

在ILIDS-VID数据集上进行训练,然后在PRID-2011数据集上进行测试。

论文阅读笔记(十一)【ICCV2017】:Jointly Attentive Spatial-Temporal Pooling Networks for Video-based Person Re-Identification的更多相关文章

  1. 论文阅读笔记二十五:Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition(SPPNet CVPR2014)

    论文源址:https://arxiv.org/abs/1406.4729 tensorflow相关代码:https://github.com/peace195/sppnet 摘要 深度卷积网络需要输入 ...

  2. 论文阅读笔记十一:Rethinking Atrous Convolution for Semantic Image Segmentation(DeepLabv3)(CVPR2017)

    论文链接:https://blog.csdn.net/qq_34889607/article/details/8053642 摘要 该文重新窥探空洞卷积的神秘,在语义分割领域,空洞卷积是调整卷积核感受 ...

  3. 论文阅读 A Data-Driven Graph Generative Model for Temporal Interaction Networks

    13 A Data-Driven Graph Generative Model for Temporal Interaction Networks link:https://scholar.googl ...

  4. 论文阅读笔记十七:RefineNet: Multi-Path Refinement Networks for High-Resolution Semantic Segmentation(CVPR2017)

    论文源址:https://arxiv.org/abs/1611.06612 tensorflow代码:https://github.com/eragonruan/refinenet-image-seg ...

  5. 论文阅读笔记: Multi-Perspective Sentence Similarity Modeling with Convolution Neural Networks

    论文概况 Multi-Perspective Sentence Similarity Modeling with Convolution Neural Networks是处理比较两个句子相似度的问题, ...

  6. 论文阅读笔记二-ImageNet Classification with Deep Convolutional Neural Networks

    分类的数据大小:1.2million 张,包括1000个类别. 网络结构:60million个参数,650,000个神经元.网络由5层卷积层,其中由最大值池化层和三个1000输出的(与图片的类别数相同 ...

  7. 论文阅读笔记(十)【CVPR2016】:Recurrent Convolutional Network for Video-based Person Re-Identification

    Introduction 该文章首次采用深度学习方法来解决基于视频的行人重识别,创新点:提出了一个新的循环神经网络架构(recurrent DNN architecture),通过使用Siamese网 ...

  8. 论文阅读笔记(二十一)【CVPR2017】:Deep Spatial-Temporal Fusion Network for Video-Based Person Re-Identification

    Introduction (1)Motivation: 当前CNN无法提取图像序列的关系特征:RNN较为忽视视频序列前期的帧信息,也缺乏对于步态等具体信息的提取:Siamese损失和Triplet损失 ...

  9. 论文阅读笔记(十八)【ITIP2019】:Dynamic Graph Co-Matching for Unsupervised Video-Based Person Re-Identification

    论文阅读笔记(十七)ICCV2017的扩刊(会议论文[传送门]) 改进部分: (1)惩罚函数:原本由两部分组成的惩罚函数,改为只包含 Sequence Cost 函数: (2)对重新权重改进: ① P ...

  10. 论文阅读笔记 - YARN : Architecture of Next Generation Apache Hadoop MapReduceFramework

    作者:刘旭晖 Raymond 转载请注明出处 Email:colorant at 163.com BLOG:http://blog.csdn.net/colorant/ 更多论文阅读笔记 http:/ ...

随机推荐

  1. ## springboot 下策略模式的简单使用

    1.灵魂三问 接手前人(已跑路)项目快乐否? 前人项目不写注释懵逼否? 一个方法中一堆if/else,且业务判断条件用简单数字(或英文字母),不带注释,想打人否?     所以,对于上述三个问题,我写 ...

  2. 【大白话系统】MySQL 学习总结 之 缓冲池(Buffer Pool) 如何支撑高并发和动态调整

    如果大家对我的 [大白话系列]MySQL 学习总结系列 感兴趣的话,可以点击关注一波. 一.上节回顾 在上节< 缓冲池(Buffer Pool) 的设计原理和管理机制>中,介绍了缓冲池整体 ...

  3. 持续化运维 DevOps

            DevOps(Development和Operations的组合词)是一组过程.方法与系统的统称,用于促进开发(应用程序/软件工程).技术运营和质量保障(QA)部门之间的沟通.协作与整 ...

  4. zabbix的mysql优化后的配置文件

    zabbix的mysql数据库导致磁盘IO一直90%以上,访问卡的一逼 改了配置文件最后好了 [root@root /]# cat /etc/my.cnf [mysqld] datadir=/Data ...

  5. MySQL中大数据表增加字段,增加索引实现

    MySQL中大数据表增加字段,通过增加索引实现 普通的添加字段sql ALTER TABLE `table_name` ADD COLUMN `num` int(10) NOT NULL DEFAUL ...

  6. 蓝桥杯ALGO-1,区间k大数查询

    #include<stdio.h> int devide(long a[], int low, int high) { long key = a[high]; while (low< ...

  7. 【算法总结】图论/dp-动态规划 大总结

    写于一只蹲在角落的蒟蒻-Z__X... 2020.2.7,图论和 \(dp\) 终于告一段落.蓦然回首,好似已走过许多...不曾细细品味,太多太多又绵延不断地向我涌来... 谨以此纪念 逝去 的图论和 ...

  8. matplotlib如何画子图

    目录 前言 常用的两种方式 方式一:通过plt的subplot 方式二:通过figure的add_subplot 方式三:通过plt的subplots 如何不规则划分 前言 Matplotlib的可以 ...

  9. cir from c# 托管堆和垃圾回收

    1,托管堆基础 调用IL的newobj 为资源分配内存 初始化内存,设置其初始状态并使资源可用.类型的实列构造器负责设置初始化状态 访问类型的成员来使用资源 摧毁状态进行清理 释放内存//垃圾回收期负 ...

  10. asp.net core 3.x Identity

    一.前言 这方面的资料很多,重复的写没必要,但是最近一直在学习身份验证和授权相关东东,为了成体系还是写一篇,主要是从概念上理解identity系统. 参考:https://www.cnblogs.co ...