逆元(inv)
推荐博客 : http://blog.csdn.net/baidu_35643793/article/details/75268911
通常我们在计算除法取模时,并不能直接的取模后再去相除,答案会有问题,在这里我们就引入逆元的,(a/b)%mod = (a*c)%mod , 在这里 c 是 b 的逆元。
即 a/b 的模等于 a*b 的逆元的模;
求逆元的方法 :
(1) 费马小定理
在是素数的情况下,对任意整数都存在逆元。
题目中给定的对 P 去模,且 P 是素数,则数X的逆元就是 X^(p-2) 。
代码示例 :
const ll mod = 998244353;
ll qpow(ll x, ll cnt){
ll ans = 1;
while(cnt > 0){
if (cnt&1) ans = (ans*x)%mod;
x = (x*x)%mod;
cnt >>= 1;
}
return ans;
}
注意 : 最后的答案一定要在取一次模才可以 !
(2)扩展欧几里得
同余方程 ax = b (mod n) , 当 b = 1 时, ax = 1 (mod n) , 此时称 x 为 a 对模 n 得乘法逆元, 那么就可以转换为 ax - ny = 1 ,逆元存在得条件时 gcd(a, n) = 1 。
代码示例:
void exgcd(ll a, ll b, ll &g, ll &x, ll &y){
if (b == 0) {g = a; x = 1; y = 0;}
else {
exgcd(b, a%b, g, y, x);
y -= (a/b)*x;
}
}
ll inv(ll a, ll n){
ll d, x, y;
exgcd(a, n, d, x, y);
return d == 1?(x+n)%n:-1;
}
(3) 欧拉函数
当 p 是素数的时候,由费马小定理值 a^(p) = a (mod p) , 那么则有 a ^ (p-1) = 1 (mod p) , 在变形则由 a ^ (p-2) = a^(-1) (mod p)
当 p 不是素数得时候,这时候就需要借助欧拉函数,
a^(phi(p)) = 1 (mod p)
a*a^(phi(p)-1)≡1 (mod p)
a^(-1)≡a^(phi(p)-1) (mod p)
逆元(inv)的更多相关文章
- 逆元(inv)
当求解公式:(a/b)%m 时,因b可能会过大,会出现爆精度的情况,所以需变除法为乘法: 设c是b的逆元,则有b*c≡1(mod m): 则(a/b)%m = (a/b)*1%m = (a/b)*b* ...
- 逆元Inv(模板+应用)
逆元: 如果满足公式,则有a 是 b的逆元同时b也是a的逆元. 逆元的应用: 设c为b在对m取余的意义下的逆元: 在求解公式 (a / b) % m的时候,如果b可能会非常的大,所以会出现爆精度的问题 ...
- gcd,lcm,ext_gcd,inv
Least Common Multiple http://acm.hdu.edu.cn/showproblem.php?pid=1019 #include<cstdio> int gcd( ...
- hdu 5407 CRB and Candies(组合数+最小公倍数+素数表+逆元)2015 Multi-University Training Contest 10
题意: 输入n,求c(n,0)到c(n,n)的所有组合数的最小公倍数. 输入: 首行输入整数t,表示共有t组测试样例. 每组测试样例包含一个正整数n(1<=n<=1e6). 输出: 输出结 ...
- A. On The Way to Lucky Plaza 概率 乘法逆元
A. On The Way to Lucky Plaza time limit per test 1.0 s memory limit per test 256 MB input standard i ...
- Codeforces gym 101343 A. On The Way to Lucky Plaza【概率+逆元+精度问题】
2017 JUST Programming Contest 2.0 题目链接:http://codeforces.com/gym/101343/problem/A A. On The Way to ...
- HDU 5698——瞬间移动——————【逆元求组合数】
瞬间移动 Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Submis ...
- 【题解】POJ1845 Sumdiv(乘法逆元+约数和)
POJ1845:http://poj.org/problem?id=1845 思路: AB可以表示成多个质数的幂相乘的形式:AB=(a1n1)*(a2n2)* ...*(amnm) 根据算数基本定理可 ...
- O(n)求素数,求欧拉函数,求莫比乌斯函数,求对mod的逆元,各种求
筛素数 void shai() { no[1]=true;no[0]=true; for(int i=2;i<=r;i++) { if(!no[i]) p[++p[0]]=i; int j=1, ...
- hdu 5698(杨辉三角的性质+逆元)
---恢复内容开始--- 瞬间移动 Accepts: 1018 Submissions: 3620 Time Limit: 4000/2000 MS (Java/Others) Memory Limi ...
随机推荐
- 符合阿里巴巴代码规范的checkstyle检测文件
一.安装与简介 eclipse和idea都有对应的插件,找到插件安装界面.搜索checkstyle,点击安装后,重启IDE即可.(网上有很多安装教程,就不重复制造轮子了) 二.导入配置文件 在chec ...
- 《代码整洁之道 中文版》高清 PDF 电子书下载
代码整洁之道.PDF 下载 代码整洁之道.PDF 中文版 高清 PDF 电子书下载 代码整洁之道下载 点我下载 作者简介 · · · · · · Robert C. Martin,Object ...
- java 合并流(SequenceInputStream)
需要两个源文件,还有输出的目标文件 SequenceInputStream: 将两个文件的内容合并成一个文件 该类提供的方法: SequenceInputStream(InputStream s1, ...
- async和await的执行顺序问题
说明 : 要了解执行顺序,所需要的知识是了解浏览器js运行机制,以及微任务和宏任务的先后顺序.如果你明白了宏任务.微任务,请往下看: async function async1 () { consol ...
- Java中getBytes()方法--使用详解
getBytes()方法详解 在Java中,String的getBytes()方法是得到一个操作系统默认的编码格式的字节数组.这表示在不同的操作系统下,返回的东西不一样! 1. str.getByte ...
- 获取 Nuget 版本号
本文告诉大家通过命令行获取 Nuget 的版本号 在 Nuget 中没有 -version 和 -v 和 --version 等写法,只需要直接输入 nuget 在第一行就会显示版本号 nuget N ...
- 【mac】Mac 终端如何切换成管理员用户
方法1.打开终端输入 sudo su 然后回车 Password: ------(输入root密码即可) sh-3.2# -------- (输入执行的命令即可,例如 npm i -g np ...
- 2019-9-20-SharpDx-的代替项目
title author date CreateTime categories SharpDx 的代替项目 lindexi 2019-09-20 09:13:59 +0800 2019-09-20 0 ...
- windows键的妙用
(1)当你需要暂时离开电脑一会儿,怕其余人动你的电脑时,你只需要按windows键+L就可以了,当然前提是你给自己的电脑设置过开机密码. (2)有时候你需要在盘里边找某个文件,但你的桌面上密密麻麻的, ...
- Mysql的SQL优化指北
概述 在一次和技术大佬的聊天中被问到,平时我是怎么做Mysql的优化的?在这个问题上我只回答出了几点,感觉回答的不够完美,所以我打算整理一次SQL的优化问题. 要知道怎么优化首先要知道一条SQL是怎么 ...