关于\(LCP\)有如下两个公式:

  • \(LCP~Lemma:\) 对任意 \(1\le i<j<k\le n\) ,存在 \(LCP(i,k)=min\{LCP(i,j),LCP(j,k)\}\) 成立。
  • \(LCP~Theorem:\) 对任意 \(i<j\),存在 \(LCP(i,j)=^{~~~~~min}_{i+1 \le k \le j}\{LCP(k-1,k)\}\) 成立。

\(LCP~Lemma\) 的证明:

设 \[p=min\{LCP(i,j),LCP(j,k)\}\]
则有 \[LCP(i,j) \ge p,LCP(j,k) \ge p\]
可得 \[LCP(i,k) \ge p\]
又设 \[LCP(i,k)=q>p\]
则\(Suffix_i\)与\(Suffix_k\)前\(q\)个字符相同。即:\[Suffix_{i,1}=Suffix_{k,1}\] \[Suffix_{i,2}=Suffix_{k,2}\] \[…\] \[Suffix_{i,q}=Suffix_{k,q}\]
而 \[min{LCP(i,j),LCP(j,k)}=p\]
说明 \[Suffix_{i,p+1}!=Suffix_{j,p+1}~~\text{或}~~Suffix_{j,p+1}!=Suffix_{k,p+1}\]
那么一定有如下式子成立 \[Suffix_{i,p+1}!=Suffix_{k,p+1}\]
于是,\(q>p\)不成立,即\[LCP(i,k) \le p\]
于是\[LCP(i,k)=p=min\{LCP(i,j),LCP(j,k)\}~~\text{得证。}\]

\(LCP~Theorem\) 的证明:

由\(LCP~Lemma\)得:\[LCP(i,j)=min\{LCP(i,i+1),LCP(i+1,j)\}\]
又:\[LCP(i+1,j)=min\{LCP(i+1,i+2),LCP(i+2,j)\}\]
经归纳得:\[LCP(i,j)=^{min}_{i<k \le j}\{LCP(k-1,k)\}\text{得证。}\]

关于后缀间$LCP$的一些公式的证明的更多相关文章

  1. hdu 3518 Boring counting 后缀数组LCP

    题目链接 题意:给定长度为n(n <= 1000)的只含小写字母的字符串,问字符串子串不重叠出现最少两次的不同子串个数; input: aaaa ababcabb aaaaaa # output ...

  2. UVA 11107 Life Forms——(多字符串的最长公共子序列,后缀数组+LCP)

    题意: 输入n个序列,求出一个最大长度的字符串,使得它在超过一半的DNA序列中连续出现.如果有多解,按照字典序从小到大输出所有解. 分析:这道题的关键是将多个字符串连接成一个串,方法是用不同的分隔符把 ...

  3. 一个形式较精细的Strling公式的证明

    近日整理书稿,在整理至Strling公式处时,发现当时数学老师所讲的是形式比较精细的一种: Strling公式:\(n!=\sqrt{2\pi n}\left(\dfrac{n}{\mathrm{e} ...

  4. Cauchy-Binet公式的证明 及 对Denton et al. (2019)的个人注(1)

    ------------恢复内容开始------------ 据新闻报道数学天才陶哲轩和3个物理学家研究出一个只用特征值就可以计算矩阵特征向量的公式, 我感觉很有趣, 这应该能够应用在很多领域中, 所 ...

  5. RSA算法原理——(3)RSA加解密过程及公式论证

    上期(RSA简介及基础数论知识)为大家介绍了:互质.欧拉函数.欧拉定理.模反元素 这四个数论的知识点,而这四个知识点是理解RSA加密算法的基石,忘了的同学可以快速的回顾一遍. 一.目前常见加密算法简介 ...

  6. 【bzoj2882】工艺 后缀自动机+STL-map

    题目描述 小敏和小燕是一对好朋友. 他们正在玩一种神奇的游戏,叫Minecraft. 他们现在要做一个由方块构成的长条工艺品.但是方块现在是乱的,而且由于机器的要求,他们只能做到把这个工艺品最左边的方 ...

  7. 一文读懂后缀自动机 Suffix_Automata

    原论文(俄文)地址:suffix_automata 原翻译(中文)地址:后缀自动机详解(DZYO的博客) Upd:强推浅显易懂(?)的SAM讲解 后缀自动机 后缀自动机(单词的有向无环图)--是一种强 ...

  8. 后缀自动机&回文自动机学习笔记

    在学了一天其实是边学边摆之后我终于大概$get$后缀自动机了,,,就很感动,于是时隔多年我终于决定再写篇学习笔记辽$QwQ$ $umm$和$FFT$学习笔记一样,这是一篇单纯的$gql$的知识总结博, ...

  9. 用积分方法求K次方和数列公式

    这是我很早以前在高中时发现的一个通用计算K次方和数列公式的方法,很特别的地方是用了微积分中的积分方法.目前我还没有发现有谁提出和我一样的方法,如果哪位读者有相关发现,麻烦告知我. 大家很多人都知道高斯 ...

随机推荐

  1. Python--day34--前面网络编程的复习

  2. java 泛型的上限与下限

    设置泛型对象的上限使用extends,表示参数类型只能是该类型或该类型的子类: 声明对象:类名<? extends 类> 对象名 定义类:类名<泛型标签 extends 类>{ ...

  3. 【t046】牛跳

    Time Limit: 1 second Memory Limit: 128 MB [问题描述] John的奶牛们计划要跳到月亮上去.它们请魔法师配制了P(1 <= P <=150,000 ...

  4. P1029 栈的基础操作

    题目描述 现在给你一个栈,它一开始是空的,你需要模拟栈的操作.栈的操作包括如下: "push x":将元素 x 放入栈中,其中x是一个int范围内的整数: "pop&qu ...

  5. 在js中arguments对象的理解

    一.在函数调用的时候,浏览器每次都会传递进两个隐式参数 函数的上下文对象this 封装实参的对象arguments 二.arguments 对象 arguments 对象实际上是所在函数的一个内置类数 ...

  6. vue-learning:29 - component - 组件三大API之三:slot

    组件三大API之三: slot <slot>标签 v-slot指令 普通插槽 有默认值的插槽 具名插槽 作用域插槽 v-slot是Vue 2.6.0引入的一个新语法指令,目的是统一之前sl ...

  7. dotnet core 用值初始化整个数组

    如果想要创建一个数组,在这个数组初始化一个值,有多少不同的方法? 本文告诉大家三个不同的方法初始化 在开发中,会不会用很多的时间在写下面的代码 var prime = new bool[1000]; ...

  8. 服务端CURL请求

    服务端与服务端之间,也存在接口编程. 比如我们网站服务端,需要发送短信.发送邮件.查询快递等,都需要调用第三方平台的接口. 1.php中发送请求 ①file_get_contents函数 :传递完整的 ...

  9. boostrap-非常好用但是容易让人忽略的地方【4】:Font Awesome

    font-awesome基本用法 官方代码传送门 font-awesome在bootstrap中的特殊用法(这个才是重点) 要点归纳1(官方) 官方代码传送门 要点归纳2(我的) <a href ...

  10. JMeter FTP测试计划

    为了演示测试目的,我们将使用公共可用的FTP位置,可以使用它来测试文件的下载. 您可以使用市场上现有的任何可用的演示FTP位置.我们使用URL下的FTP位置: https://dlptest.com/ ...