“Xavier”初始化方法是一种很有效的神经网络初始化方法,方法来源于2010年的一篇论文《Understanding the difficulty of training deep feedforward neural networks》,可惜直到近两年,这个方法才逐渐得到更多人的应用和认可。

为了使得网络中信息更好的流动,每一层输出的方差应该尽量相等。
基于这个目标,现在我们就去推导一下:每一层的权重应该满足哪种条件。
文章先假设的是线性激活函数,而且满足0点处导数为1,即

现在我们先来分析一层卷积:

其中ni表示输入个数。

根据概率统计知识我们有下面的方差公式:

特别的,当我们假设输入和权重都是0均值时(目前有了BN之后,这一点也较容易满足),上式可以简化为:

进一步假设输入x和权重w独立同分布,则有:

于是,为了保证输入与输出方差一致,则应该有:

对于一个多层的网络,某一层的方差可以用累积的形式表达:

特别的,反向传播计算梯度时同样具有类似的形式:

综上,为了保证前向传播和反向传播时每一层的方差一致,应满足:

但是,实际当中输入与输出的个数往往不相等,于是为了均衡考量,最终我们的权重方差应满足:

———————————————————————————————————————

———————————————————————————————————————

学过概率统计的都知道 [a,b] 间的均匀分布的方差为:

因此,Xavier初始化的实现就是下面的均匀分布:
——————————————————————————————————————————

———————————————————————————————————————————

下面,我们来看一下caffe中具体是怎样实现的,代码位于include/caffe/filler.hpp文件中。

template <typename Dtype>
class XavierFiller : public Filler<Dtype> {
public:
explicit XavierFiller(const FillerParameter& param)
: Filler<Dtype>(param) {}
virtual void Fill(Blob<Dtype>* blob) {
CHECK(blob->count());
int fan_in = blob->count() / blob->num();
int fan_out = blob->count() / blob->channels();
Dtype n = fan_in; // default to fan_in
if (this->filler_param_.variance_norm() ==
FillerParameter_VarianceNorm_AVERAGE) {
n = (fan_in + fan_out) / Dtype(2);
} else if (this->filler_param_.variance_norm() ==
FillerParameter_VarianceNorm_FAN_OUT) {
n = fan_out;
}
Dtype scale = sqrt(Dtype(3) / n);
caffe_rng_uniform<Dtype>(blob->count(), -scale, scale,
blob->mutable_cpu_data());
CHECK_EQ(this->filler_param_.sparse(), -1)
<< "Sparsity not supported by this Filler.";
}
};
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
由上面可以看出,caffe的Xavier实现有三种选择

(1) 默认情况,方差只考虑输入个数:

(2) FillerParameter_VarianceNorm_FAN_OUT,方差只考虑输出个数:

(3) FillerParameter_VarianceNorm_AVERAGE,方差同时考虑输入和输出个数:

之所以默认只考虑输入,我个人觉得是因为前向信息的传播更重要一些
---------------------
作者:shuzfan
来源:CSDN
原文:https://blog.csdn.net/shuzfan/article/details/51338178
版权声明:本文为博主原创文章,转载请附上博文链接!

深度学习——Xavier初始化方法的更多相关文章

  1. 深度学习----Xavier初始化方法

    “Xavier”初始化方法是一种很有效的神经网络初始化方法,方法来源于2010年的一篇论文<Understanding the difficulty of training deep feedf ...

  2. 深度学习的Xavier初始化方法

    在tensorflow中,有一个初始化函数:tf.contrib.layers.variance_scaling_initializer.Tensorflow 官网的介绍为: variance_sca ...

  3. [深度学习] 权重初始化--Weight Initialization

    深度学习中的weight initialization对模型收敛速度和模型质量有重要影响! 在ReLU activation function中推荐使用Xavier Initialization的变种 ...

  4. 深度学习的集成方法——Ensemble Methods for Deep Learning Neural Networks

    本文主要参考Ensemble Methods for Deep Learning Neural Networks一文. 1. 前言 神经网络具有很高的方差,不易复现出结果,而且模型的结果对初始化参数异 ...

  5. go微服务框架go-micro深度学习(四) rpc方法调用过程详解

    上一篇帖子go微服务框架go-micro深度学习(三) Registry服务的注册和发现详细解释了go-micro是如何做服务注册和发现在,服务端注册server信息,client获取server的地 ...

  6. 深度学习Momentum(动量方法)

    转自:http://blog.csdn.net/bvl10101111/article/details/72615621 先上结论: 1.动量方法主要是为了解决Hessian矩阵病态条件问题(直观上讲 ...

  7. 深度学习中Xavier初始化

    "Xavier"初始化方法是一种很有效的神经网络初始化方法,方法来源于2010年的一篇论文<Understanding the difficulty of training ...

  8. 网络权重初始化方法总结(下):Lecun、Xavier与He Kaiming

    目录 权重初始化最佳实践 期望与方差的相关性质 全连接层方差分析 tanh下的初始化方法 Lecun 1998 Xavier 2010 ReLU/PReLU下的初始化方法 He 2015 for Re ...

  9. 深度学习常见的优化方法(Optimizer)总结:Adam,SGD,Momentum,AdaGard等

    机器学习的常见优化方法在最近的学习中经常遇到,但是还是不够精通.将自己的学习记录下来,以备不时之需 基础知识: 机器学习几乎所有的算法都要利用损失函数 lossfunction 来检验算法模型的优劣, ...

随机推荐

  1. shell linux基本命令实例、笔记

    1. 在当前文件夹下.查找20分钟内,被訪问过的文件, 并将文件的详情显示出来: find ./ -name '*.log' -mmin -20 -exec ls -l {} \;   当然,须要指出 ...

  2. Neo4j属性图模型简单介绍

    本文主要是对Neo4j属性图模型简单的介绍. Neo4j是什么? Neo4j是一款是由java语言实现的图数据库,图形数据库将数据以图的数据结构进行存储和管理,并且能够以高度可问的方式优雅地表示任何种 ...

  3. Docker Mysql部署

    1.下载tomcat镜像 docker pull mysql 2.启动容器 docker run -d --name mysql -p 3306:3306 -e MYSQL_ROOT_PASSWORD ...

  4. bzoj 3895 取石子——博弈论

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3895 看题解:https://blog.csdn.net/popoqqq/article/d ...

  5. 性能测试工具---loadrunner

    1.什么是参数化参数化:把固定的一个值,变成动态.可变的数组,把数组的值进行值传递.数组大小可控制.2.为什么要使用参数化,2个原因.1.数据库校验字段值的唯一性.(数据库修改字段的唯一性,可避免参数 ...

  6. 安装 cx_Oracle

    1.下载 oracle client instant  和  sdk,  全部解压到 /opt/instantclient_11_2/ http://www.oracle.com/technetwor ...

  7. Excel柱状图折线图组合怎么做 Excel百分比趋势图制作教程

    Excel柱状图折线图组合怎么做 Excel百分比趋势图制作教程 用excel作图时候经常会碰到做柱状图和折线图组合,这样的图一般难在折线图的数据很小,是百分比趋势图,所以经常相对前面主数据太小了,在 ...

  8. 最短路 HDU - 2544 (dijkstra算法或Floyd算法)

    Dijkstra解法: #include <stdio.h> #include <iostream> #include <cstring> #include < ...

  9. Python高级核心技术97讲 系列教程

    Python高级核心技术97讲 系列教程 整个课程都看完了,这个课程的分享可以往下看,下面有链接,之前做java开发也做了一些年头,也分享下自己看这个视频的感受,单论单个知识点课程本身没问题,大家看的 ...

  10. pug的安装与使用

    说明 Pug原名不叫Pug,是大名鼎鼎的jade,后来由于商标的原因,改为Pug,哈巴狗.其实只是换个名字,语法都与jade一样.丑话说在前面,Pug有它本身的缺点--可移植性差,调试困难,性能并不出 ...