UVA - 12333 Revenge of Fibonacci (大数 字典树)
The well-known Fibonacci sequence is defined as following:
F(0) = F(1) = 1
F(n) = F(n − 1) + F(n − 2) ∀n ≥ 2
Here we regard n as the index of the Fibonacci number F(n).
This sequence has been studied since the publication of Fibonacci’s book Liber Abaci. So far, many properties of this sequence have been introduced.
You had been interested in this sequence, while after reading lots of papers about it. You think there’s no need to research in it anymore because of the lack of its unrevealed properties. Yesterday, you decided to study some other sequences like Lucas sequence instead.
Fibonacci came into your dream last night. “Stupid human beings. Lots of important properties of Fibonacci sequence have not been studied by anyone, for example, from the Fibonacci number 347746739...”
You woke up and couldn’t remember the whole number except the first few digits Fibonacci told you. You decided to write a program to find this number out in order to continue your research on Fibonacci sequence.
Input
There are multiple test cases. The first line of input contains a single integer T denoting the number of test cases (T ≤ 50000).
For each test case, there is a single line containing one non-empty string made up of at most 40 digits. And there won’t be any unnecessary leading zeroes.
Output
For each test case, output the smallest index of the smallest Fibonacci number whose decimal notation begins with the given digits. If no Fibonacci number with index smaller than 100000 satisfy that condition, output ‘-1’ instead — you think what Fibonacci wants to told you beyonds your ability.
Sample Input
15
1
12
123
1234
12345
9
98
987
9876
98765
89
32
51075176167176176176
347746739 5610
Sample Output
Case #1:0
Case #2: 25
Case #3: 226
Case #4: 1628
Case #5: 49516
Case #6: 15
Case #7: 15
Case #8: 15
Case #9: 43764
Case #10: 49750
Case #11: 10
Case #12: 51
Case #13: -1
Case #14: 1233
Case #15: 22374
#include <bits/stdc++.h>
using namespace std;
struct Node{
int id;
Node * next[];
Node(){
id = -;
for(int i = ; i < ; ++i)
next[i] = NULL;
}
};
char Fib[], In[];
int F[][];
Node * const root = new Node();
void add_node(char *str, int id)
{
Node * u = root;
for(int i = , len = strlen(str); i < len && i <= ; ++i){
int v = str[i] - '';
if(!u->next[v])
u->next[v] = new Node();
u = u->next[v];
if(u->id == -)
u->id = id;
}
}
int query(char *str)
{
Node * u = root;
for(size_t i = , len = strlen(str); i < len; ++i){
u = u->next[str[i]-''];
if(!u) return -;
}
return u->id;
}
void init()
{
memset(F, , sizeof(F));
F[][] = F[][] = ;
int s = , e = ;
add_node((char *)"", );
add_node((char *)"", );
for(int i = ; i < ; ++i){
int p = i%, q = (i+)%;
for(int j = s; j < e; ++j)
F[p][j] = F[p][j] + F[q][j];
for(int j = s; j < e; ++j)
if(F[p][j]>=){
F[p][j] %= ;
F[p][j+] += ;
}
if(F[p][e]) ++e;
if(e - s > ) ++s;
int r = e - , cnt = ;
memset(Fib, , sizeof(Fib));
while(r >= && cnt<)
Fib[cnt++] = F[p][r--] + '';
add_node(Fib, i);
}
}
int main()
{
ios::sync_with_stdio(false);
init();
int T; cin >> T;
for(int i = ; i <= T; ++i){
cin >> In;
printf("Case #%d: %d\n", i, query(In));
}
return ;
}
UVA - 12333 Revenge of Fibonacci (大数 字典树)的更多相关文章
- UVA - 12333 Revenge of Fibonacci 高精度加法 + 字典树
题目:给定一个长度为40的数字,问其是否在前100000项fibonacci数的前缀 因为是前缀,容易想到字典树,同时因为数字的长度只有40,所以我们只要把fib数的前40位加入字典树即可.这里主要讨 ...
- UVa 12333 - Revenge of Fibonacci manweifc(模拟加法竖式 & 字典树)
题意: 给定n个(n<=40)数字, 求100000个以内有没有前面n个数字符合给定的数字的fibonacci项, 如果有, 给出最小的fibonacci项, 如果没有, 输出-1. 分析: 可 ...
- UVA 12333 Revenge of Fibonacci
https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...
- HDU 4099 Revenge of Fibonacci(高精度+字典树)
题意:对给定前缀(长度不超过40),找到一个最小的n,使得Fibonacci(n)前缀与给定前缀相同,如果在[0,99999]内找不到解,输出-1. 思路:用高精度加法计算斐波那契数列,因为给定前缀长 ...
- UVa 12333 Revenge of Fibonacci (字典树+大数)
题意:给定一个长度小于40的序列,问你那是Fib数列的哪一项的前缀. 析:首先用大数把Fib数列的前100000-1项算出来,注意,一定不能是100000,要不然会WA的,然后每个数取前40位,不足4 ...
- hdu 4099 Revenge of Fibonacci 大数+压位+trie
最近手感有点差,所以做点水题来锻炼一下信心. 下周的南京区域赛估计就是我的退役赛了,bless all. Revenge of Fibonacci Time Limit: 10000/5000 MS ...
- UVA 11488 Hyper Prefix Sets (字典树)
题目链接:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem ...
- uva 11488 - Hyper Prefix Sets(字典树)
H Hyper Prefix Sets Prefix goodness of a set string is length of longest common prefix*number of str ...
- TZOJ 3820 Revenge of Fibonacci(大数+trie)
描述 The well-known Fibonacci sequence is defined as following: Here we regard n as the index of the F ...
随机推荐
- redis教程-基础数据结构
需要整套redis缓存高可用集群教学视频的加qq:1324981084,本套视频从安装到集群的搭建和源码的解析,从零基础讲解. 一.Redis 有 5 种基础数据结构,分别为:string (字符串) ...
- codewars--js--ten minutes walk
题目: You live in the city of Cartesia where all roads are laid out in a perfect grid. You arrived ten ...
- 11种常用css样式之background学习
background如何简写?如何在背景图像不变的情况下,依旧实现页面文字滚动,为之奈何?别担心,快用background-attachment: fixed;/*固定定位*/常用的backgroun ...
- SQL Server等待事件—PAGEIOLATCH_EX
什么是PAGEIOLATCH_EX等待事件? 下面我们将对PAGEIOLATCH_EX等待事件的相关资料做一个简单的归纳.整理.关于PAGEIOLATCH_EX,官方文档的简单介绍如下: PAGEIO ...
- Thingsboard之MQTT设备协议简介
MQTT基础知识 MQTT是一种轻量级的发布 - 订阅消息传递协议,可能使其最适合各种物联网设备.您可以在此处找到有关MQTT的更多信息.ThingsBoard服务器节点充当MQTT Broker,支 ...
- ubuntu 安装mysql数据库
apt方式安装 官网参考: https://dev.mysql.com/doc/mysql-apt-repo-quick-guide/en/ 执行命令: sudo wget https://dev.m ...
- StringBuilder的性能
1.新创建一个对象 long startTimeA = System.currentTimeMillis(); StringBuilder sb = null; for (int i = 1 ...
- 代数式到c语言表达式和常用的c语言数学库函数_pow_sqrt_exp_fabs_abs
数学知识来源于生活,因此我们需要把相关的数学的知识在自己生活找到实例. #include "common.h" #include <stdio.h> #include ...
- 聊聊SNMP协议
注:博主 Chloneda:个人博客 | 博客园 | Github | Gitee | 知乎 本文源链接:https://www.cnblogs.com/chloneda/p/snmp-protoco ...
- Xamarin.Forms登录对话框及表单验证
微信公众号:Dotnet9,网站:Dotnet9,问题或建议,请网站留言: 如果您觉得Dotnet9对您有帮助,欢迎赞赏. Xamarin.Forms登录系统 内容目录 实现效果 业务场景 编码实现 ...